This patch replaces the AArch64StackOffset class by the generic one
defined in TypeSize.h.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D88983
When the "after" region of a WhileOp is merely forwarding its arguments back to
the "before" region, i.e. WhileOp is a canonical do-while loop, a simpler CFG
subgraph that omits the "after" region with its extra branch operation can be
produced. Loop rotation from general "while" to "if { do-while }" is left for a
future canonicalization pattern when it becomes necessary.
Differential Revision: https://reviews.llvm.org/D90604
The lowering is a straightforward inlining of the "before" and "after" regions
connected by (conditional) branches. This plugs the WhileOp into the
progressive lowering scheme. Future commits may choose to target WhileOp
instead of CFG when lowering ForOp.
Differential Revision: https://reviews.llvm.org/D90603
The new construct represents a generic loop with two regions: one executed
before the loop condition is verifier and another after that. This construct
can be used to express both a "while" loop and a "do-while" loop, depending on
where the main payload is located. It is intended as an intermediate
abstraction for lowering, which will be added later. This form is relatively
easy to target from higher-level abstractions and supports transformations such
as loop rotation and LICM.
Differential Revision: https://reviews.llvm.org/D90255
Add the semantic checks for the OpenMP 4.5 - 2.15.4.1 copyin clause.
Resolve OpenMPThreadprivate directive since the list of items specified
in copyin clause should be threadprivate.
Test cases : omp-copyin01.f90, omp-copyin02.f90, omp-copyin03.f90,
omp-copyin04.f90, omp-copyin05.f90
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D89385
* All functions that return an Operation now return an OpView.
* All functions that accept an Operation now accept an _OperationBase, which both Operation and OpView extend and can resolve to the backing Operation.
* Moves user-facing instance methods from Operation -> _OperationBase so that both can have the same API.
* Concretely, this means that if there are custom op classes defined (i.e. in Python), any iteration or creation will return the appropriate instance (i.e. if you get/create an std.addf, you will get an instance of the mlir.dialects.std.AddFOp class, getting full access to any custom API it exposes).
* Refactors all __eq__ methods after realizing the proper way to do this for _OperationBase.
Differential Revision: https://reviews.llvm.org/D90584
This reverts commit 59b22e495c.
That commit broke building for ARM and AArch64, reproducible like this:
$ cat apedec-reduced.c
a;
b(e) {
int c;
unsigned d = f();
c = d >> 32 - e;
return c;
}
g() {
int h = i();
if (a)
h = h << a | b(a);
return h;
}
$ clang -target aarch64-linux-gnu -w -c -O3 apedec-reduced.c
clang: ../lib/Transforms/InstCombine/InstructionCombining.cpp:3656: bool llvm::InstCombinerImpl::run(): Assertion `DT.dominates(BB, UserParent) && "Dominance relation broken?"' failed.
Same thing for e.g. an armv7-linux-gnueabihf target.
This is useful in C source files where it is easy for a typo to be
silently assumed by the compiler to be an implicit declaration.
Differential Revision: https://reviews.llvm.org/D90727
This delegate the control of the buffering to the user of the API. This
seems like a safer option as messages are immediately propagated to the
user, which may lead to less surprising behavior during debugging for
instance.
In terms of performance, a user can add a buffered stream on the other
side of the callback.
Differential Revision: https://reviews.llvm.org/D90726
This is exposing the basic functionalities (create, nest, addPass, run) of
the PassManager through the C API in the new header: `include/mlir-c/Pass.h`.
In order to exercise it in the unit-test, a basic TableGen backend is
also provided to generate a simple C wrapper around the pass
constructor. It is used to expose the libTransforms passes to the C API.
Reviewed By: stellaraccident, ftynse
Differential Revision: https://reviews.llvm.org/D90667
- Basically iterate each pair of memory operands from both instructions
and return true if any of them may alias.
- The exception are memory instructions without any memory operand. They
may touch everything and could alias to any memory instruction.
Differential Revision: https://reviews.llvm.org/D89447
This enables using the arrow operator to access members of the contained item.
```lang=c++
Located<std::string> X;
const char* CStr = X->c_str();
```
This is inline with how classes like `Optional` handle the arrow operator.
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D90682
For the <2 x float> case, instead of adding another combine or legalization to
get it into a <4 x float> form, I'm just adding a GISel specific selection
pattern to cover it.
Differential Revision: https://reviews.llvm.org/D90699
- Verify that attributes parsed using a custom parser do not have duplicates.
- If there are duplicated in the attribute dictionary in the input, they get caught during the
dictionary parsing.
- This check verifies that there is no duplication between the parsed dictionary and any
attributes that might be added by the custom parser (or when the custom parsing code
adds duplicate attributes).
- Fixes https://bugs.llvm.org/show_bug.cgi?id=48025
Differential Revision: https://reviews.llvm.org/D90502
Add explicit member initializers to the declarations of
some constexpr values added in a recent patch to avoid an
apparent problem with gcc 8.2.0 with default initializers.
Differential revision: https://reviews.llvm.org/D90696
Previously, they were only defined for `FuncOp`.
To support this, `FunctionLike` needs a way to get an updated type
from the concrete operation. This adds a new hook for that purpose,
called `getTypeWithoutArgsAndResults`.
For now, `FunctionLike` continues to assume the type is
`FunctionType`, and concrete operations that use another type can hide
the `getType`, `setType`, and `getTypeWithoutArgsAndResults` methods.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D90363
When machine instructions are in the form of
```
%0 = CONST_I32 @str
%1 = ADD_I32 %stack.0, %0
%2 = LOAD 0, 0, %1
```
In the `ADD_I32` instruction, it is possible to fold it if `%0` is a
`CONST_I32` from an immediate number. But in this case it is a global
address, so we shouldn't do that. But we haven't checked if the operand
of `ADD` is an immediate so far. This fixes the problem. (The case
applies the same for `ADD_I64` and `CONST_I64` instructions.)
Fixes https://bugs.llvm.org/show_bug.cgi?id=47944.
Patch by Julien Jorge (jjorge@quarkslab.com)
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D90577
This is based on the same idea that I am using for the basic model implementation
and what I have partly already done for x86: throughput cost is number of
instructions/uops, so size/blended costs are identical except in special cases
(for example, fdiv or other known-expensive machine instructions or things like
MVE that may require cracking into >1 uop)).
Differential Revision: https://reviews.llvm.org/D90692
The OpenMP dialect include is only needed for translation
and is not required in LLVM dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D90510
Rename the files containing the `__errno_location` function
to `__errno_location.h/cpp` to match the other files and move
the `llvmlibc_errno` macro to its own file.
Split assert.h into `__assert_fail.h` (contains the function prototype)
and assert.h (contains the assert macro).
Reviewed By: sivachandra
Differential Revision: https://reviews.llvm.org/D90653
* Use function_ref instead of std::function in several methods
* Use ::get instead of ::getChecked for IntegerType.
- It is already fully verified and constructing a mlir::Location can be extremely costly during parsing.
Add MMA builtin decoding. These builtins use the new PowerPC-specific types __vector_pair and __vector_quad.
So to avoid pervasive changes, we use custom type descriptors and custom decoding for these builtins.
We also use custom code generation to expand builtin calls with pointers to simpler intrinsic calls with non-pointer types.
Differential Revision: https://reviews.llvm.org/D81748
Some executors do not run the tests in a shell, and so assuming that
they can understand shell builtins is wrong. Instead, call Bash
directly to do what we need to do.
This still requires the executor to be able to run Bash, but at least
it does not require it to interpret command lines in the Bash language.
There is a non-conforming use of variable-sized array in the test case `parallel_offloading_map.c`. This patch fixed it.
Reviewed By: protze.joachim
Differential Revision: https://reviews.llvm.org/D90642
This introduces a mechanism for providers to interpret paths specified
in a fragment either as absolute or relative to fragment location.
This information should be used during compile stage to handle blocks correctly.
Differential Revision: https://reviews.llvm.org/D90270
Unfortunately, executing these tests correctly on platforms that do not
support a shell is very challenging. Since the executor can't just negate
the result of the command, we'd have to ship a portable program capable
of running the actual test executable, and negating its result.
Doing this portably is challenging. Since we do not currently have strong
use cases for tests that fail at runtime (we effectively have no tests
using that capability right now), it is difficult to justify making them
work portably. Instead, it makes more sense to remove this feature until
we can implement it properly (i.e. without requiring shell support).