Commit Graph

72 Commits

Author SHA1 Message Date
Arthur Eubanks 5668eda864 Revert "[CGSCC] Detect devirtualization in more cases"
This reverts commit 3024fe5b55.

Causes major compile time regressions:
https://llvm-compile-time-tracker.com/compare.php?from=3b8d8954bf2c192502d757019b9fe434864068e9&to=3024fe5b55ed72633915f613bd5e2826583c396f&stat=instructions
2020-10-23 09:53:52 -07:00
Arthur Eubanks 3024fe5b55 [CGSCC] Detect devirtualization in more cases
The devirtualization wrapper misses cases where if it wraps a pass
manager, an individual pass may devirtualize an indirect call created by
a previous pass. For example, inlining may create a new indirect call
which is devirtualized by instcombine. Currently the devirtualization
wrapper will not see that because it only checks cgscc edges at the very
beginning and end of the pass (manager) it wraps.

This fixes some tests testing this exact behavior in the legacy PM.

This piggybacks off of updateCGAndAnalysisManagerForPass()'s detection
of promoted ref to call edges.

This supercedes one of the previous mechanisms to detect
devirtualization by keeping track of potentially promoted call
instructions via WeakTrackingVHs.

There is one more existing way of detecting devirtualization, by
checking if the number of indirect calls has decreased and the number of
direct calls has increased in a function. It handles cases where calls
to functions without definitions are promoted, and some tests rely on
that. LazyCallGraph doesn't track edges to functions without
definitions so this part can't be removed in this change.

check-llvm and check-clang with -abort-on-max-devirt-iterations-reached
on by default doesn't show any failures outside of tests specifically
testing it so it doesn't needlessly rerun passes more than necessary.
(The NPM -O2/3 pipeline run the inliner/function simplification pipeline
under a devirtualization repeater pass up to 4 times by default).

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D89587
2020-10-22 19:44:22 -07:00
Arthur Eubanks faf5210420 [CGSCC] Add -abort-on-max-devirt-iterations-reached option
Aborts if we hit the max devirtualization iteration.
Will be useful for testing that changes to devirtualization don't cause
devirtualization to repeat passes more times than necessary.

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D89519
2020-10-16 12:34:52 -07:00
Arthur Eubanks 6b1ce83a12 [NewPM][CGSCC] Handle newly added functions in updateCGAndAnalysisManagerForPass
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.

However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.

This also fixes an issue I was seeing with newly created functions not
having passes run on them.

Ran check-llvm with expensive checks.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D87798
2020-09-23 15:22:18 -07:00
Yevgeny Rouban 18bc400f97 [NewPM][PassInstrumentation] Add PreservedAnalyses parameter to AfterPass* callbacks
Both AfterPass and AfterPassInvalidated pass instrumentation
callbacks get additional parameter of type PreservedAnalyses.
This patch was created by @fedor.sergeev. I have just slightly
changed it.

Reviewers: fedor.sergeev

Differential Revision: https://reviews.llvm.org/D81555
2020-08-21 16:10:42 +07:00
Yuanfang Chen 555cf42f38 [NewPM][PassInstrument] Add PrintPass callback to StandardInstrumentations
Problem:
Right now, our "Running pass" is not accurate when passes are wrapped in adaptor because adaptor is never skipped and a pass could be skipped. The other problem is that "Running pass" for a adaptor is before any "Running pass" of passes/analyses it depends on. (for example, FunctionToLoopPassAdaptor). So the order of printing is not the actual order.

Solution:
Doing things like PassManager::Debuglogging is very intrusive because we need to specify Debuglogging whenever adaptor is created. (Actually, right now we're not specifying Debuglogging for some sub-PassManagers. Check PassBuilder)

This patch move debug logging for pass as a PassInstrument callback. We could be sure that all running passes are logged and in the correct order.

This could also be used to implement hierarchy pass logging in legacy PM. We could also move logging of pass manager to this if we want.

The test fixes looks messy. It includes changes:
- Remove PassInstrumentationAnalysis
- Remove PassAdaptor
- If a PassAdaptor is for a real pass, the pass is added
- Pass reorder (to the correct order), related to PassAdaptor
- Add missing passes (due to Debuglogging not passed down)

Reviewed By: asbirlea, aeubanks

Differential Revision: https://reviews.llvm.org/D84774
2020-07-30 10:07:57 -07:00
Yuanfang Chen c4b1daed1d [NewPM] Move debugging log printing after PassInstrumentation before-pass-callbacks
For passes got skipped, this is confusing because the log said it is `running pass`
but it is skipped later.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D82511
2020-06-25 10:03:25 -07:00
Alina Sbirlea bd541b217f [NewPassManager] Add assertions when getting statefull cached analysis.
Summary:
Analyses that are statefull should not be retrieved through a proxy from
an outer IR unit, as these analyses are only invalidated at the end of
the inner IR unit manager.
This patch disallows getting the outer manager and provides an API to
get a cached analysis through the proxy. If the analysis is not
stateless, the call to getCachedResult will assert.

Reviewers: chandlerc

Subscribers: mehdi_amini, eraman, hiraditya, zzheng, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72893
2020-05-13 12:38:38 -07:00
Mircea Trofin 447e2c3067 [llvm][NFC][CallSite] Remove Implementation uses of CallSite
Reviewers: dblaikie, davidxl, craig.topper

Subscribers: arsenm, dschuff, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78142
2020-04-14 14:49:47 -07:00
Andrew Monshizadeh c5a06019d2 Extend TimeTrace to LLVM's new pass manager
With the addition of the LLD time tracing it made sense to include coverage
for LLVM's various passes. Doing so ensures that ThinLTO is also covered
with a time trace.

Before:
{F11333974}

After:
{F11333928}

Reviewed By: rnk

Differential Revision: https://reviews.llvm.org/D74516
2020-03-06 14:45:19 -08:00
Reid Kleckner 105642af5e Add PassManagerImpl.h to hide implementation details
ClangBuildAnalyzer results show that a lot of time is spent
instantiating AnalysisManager::getResultImpl across the code base:

**** Templates that took longest to instantiate:
 50445 ms: llvm::AnalysisManager<llvm::Function>::getResultImpl (412 times, avg 122 ms)
 47797 ms: llvm::AnalysisManager<llvm::Function>::getResult<llvm::TargetLibraryAnalysis> (389 times, avg 122 ms)
 46894 ms: std::tie<const unsigned long long, const bool> (2452 times, avg 19 ms)
 43851 ms: llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, 4096, 4096>::Allocate (3228 times, avg 13 ms)
 33911 ms: std::tie<const unsigned int, const unsigned int, const unsigned int, const unsigned int> (897 times, avg 37 ms)
 33854 ms: std::tie<const unsigned long long, const unsigned long long> (1897 times, avg 17 ms)
 27886 ms: std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string (11156 times, avg 2 ms)

I mentioned this result to @chandlerc, and he suggested this direction.

AnalysisManager is already explicitly instantiated, and getResultImpl
doesn't need to be inlined. Move the definition to an Impl header, and
include that header in files that explicitly instantiate
AnalysisManager. There are only four (real) IR units:
- function
- module
- loop
- cgscc

Looking at a specific transform (ArgumentPromotion.cpp), here are three
compilations before & after this change:

BEFORE:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 258.15MB
real: 0m6.297s
peak memory: 257.54MB
real: 0m5.906s
peak memory: 257.47MB
real: 0m6.219s

AFTER:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 235.35MB
real: 0m5.454s
peak memory: 234.72MB
real: 0m5.235s
peak memory: 234.39MB
real: 0m5.469s

The 20MB of memory saved seems real, and the time improvement seems like
it is there.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D73817
2020-02-03 11:15:55 -08:00
Martin Storsjö f867c8e81f [PM][CGSCC] Add parentheses to avoid a GCC warning. NFC.
This avoids a warning about "suggest parentheses around && within ||".
2020-02-03 09:55:02 +02:00
Johannes Doerfert 0137745308 [PM][CGSCC] Add a helper to update the call graph from SCC passes
With this patch new trivial edges can be added to an SCC in a CGSCC
pass via the updateCGAndAnalysisManagerForCGSCCPass method. It shares
almost all the code with the existing
updateCGAndAnalysisManagerForFunctionPass method but it implements the
first step towards the TODOs.

This was initially part of D70927.

Reviewed By: JonChesterfield

Differential Revision: https://reviews.llvm.org/D72025
2020-02-02 23:32:18 -06:00
Benjamin Kramer 31a47f9890 Revert "[CallGraph] Refine call graph for indirect calls with !callees metadata"
This reverts commit r369025. Crashes clang, test case is on the mailing
list.

llvm-svn: 369096
2019-08-16 10:59:18 +00:00
Mark Lacey 626ed22fbe [CallGraph] Refine call graph for indirect calls with !callees metadata
For indirect call sites having a small set of possible callees,
!callees metadata can be used to indicate what those callees are.
This patch updates the call graph and lazy call graph analyses so
that they consider this metadata when encountering call sites. For
the call graph, it adds a new external call graph node to the graph
for each unique !callees metadata node. A call graph edge connects
an indirect call site with the external node associated with the
!callees metadata that is attached to it. And there is an edge from
this external node to each of the callees indicated by the metadata.
Similarly, for the lazy call graph, the patch adds Ref edges from a
caller to the possible callees indicated by the metadata.

The primary purpose of the patch is to facilitate iterating over the
functions in a module such that all of the callees indicated by a
given !callees metadata node will be visited prior to the functions
containing call sites annotated by that node. This property is
required by optimizations performing a bottom-up traversal of the
SCC DAG. For example, the inliner can be made to inline through an
indirect call. If the call site is annotated with !callees metadata,
this patch ensures that the inliner will have visited all of the
callees prior to the caller, allowing it to reliably compute the
cost of inlining one or more of the potential callees.

Original patch by @mssimpso. I've made some small changes to get it
to apply, build, and pass tests on the top of tree, as well as
some minor tweaks to formatting and functionality.

Subscribers: mehdi_amini, hiraditya, llvm-commits, mssimpso

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D39339

llvm-svn: 369025
2019-08-15 17:47:53 +00:00
Chandler Carruth 923ff550b9 [NewPM] Fix a nasty bug with analysis invalidation in the new PM.
The issue here is that we actually allow CGSCC passes to mutate IR (and
therefore invalidate analyses) outside of the current SCC. At a minimum,
we need to support mutating parent and ancestor SCCs to support the
ArgumentPromotion pass which rewrites all calls to a function.

However, the analysis invalidation infrastructure is heavily based
around not needing to invalidate the same IR-unit at multiple levels.
With Loop passes for example, they don't invalidate other Loops. So we
need to customize how we handle CGSCC invalidation. Doing this without
gratuitously re-running analyses is even harder. I've avoided most of
these by using an out-of-band preserved set to accumulate the cross-SCC
invalidation, but it still isn't perfect in the case of re-visiting the
same SCC repeatedly *but* it coming off the worklist. Unclear how
important this use case really is, but I wanted to call it out.

Another wrinkle is that in order for this to successfully propagate to
function analyses, we have to make sure we have a proxy from the SCC to
the Function level. That requires pre-creating the necessary proxy.

The motivating test case now works cleanly and is added for
ArgumentPromotion.

Thanks for the review from Philip and Wei!

Differential Revision: https://reviews.llvm.org/D59869

llvm-svn: 357137
2019-03-28 00:51:36 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Fedor Sergeev a1d95c3fc4 [NewPM] fixing asserts on deleted loop in -print-after-all
IR-printing AfterPass instrumentation might be called on a loop
that has just been invalidated. We should skip printing it to
avoid spurious asserts.

Reviewed By: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D54740

llvm-svn: 348887
2018-12-11 19:05:35 +00:00
Fedor Sergeev ee8d31c49e [New PM] Introducing PassInstrumentation framework
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

  Made getName helper to return std::string (instead of StringRef initially) to fix
  asan builtbot failures on CGSCC tests.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342664
2018-09-20 17:08:45 +00:00
Eric Christopher 019889374b Temporarily Revert "[New PM] Introducing PassInstrumentation framework"
as it was causing failures in the asan buildbot.

This reverts commit r342597.

llvm-svn: 342616
2018-09-20 05:16:29 +00:00
Fedor Sergeev a5f279ea89 [New PM] Introducing PassInstrumentation framework
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342597
2018-09-19 22:42:57 +00:00
Fedor Sergeev 25de3f83be Revert rL342544: [New PM] Introducing PassInstrumentation framework
A bunch of bots fail to compile unittests. Reverting.

llvm-svn: 342552
2018-09-19 14:54:48 +00:00
Fedor Sergeev 875c938fec [New PM] Introducing PassInstrumentation framework
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@

The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.

Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
  and access to them.

* PassInstrumentation class that handles instrumentation-point interfaces
  that call into PassInstrumentationCallbacks.

* Callbacks accept StringRef which is just a name of the Pass right now.
  There were some ideas to pass an opaque wrapper for the pointer to pass instance,
  however it appears that pointer does not actually identify the instance
  (adaptors and managers might have the same address with the pass they govern).
  Hence it was decided to go simple for now and then later decide on what the proper
  mental model of identifying a "pass in a phase of pipeline" is.

* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
  on different IRUnits (e.g. Analyses).

* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
  usual AnalysisManager::getResult. All pass managers were updated to run that
  to get PassInstrumentation object for instrumentation calls.

* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
  args out of a generic PassManager's extra args. This is the only way I was able to explicitly
  run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
  RepeatedPass::run.
  TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
  and then get rid of getAnalysisResult by improving RepeatedPass implementation.

* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
  PassInstrumentationAnalysis. Callbacks registration should be performed directly
  through PassInstrumentationCallbacks.

* new-pm tests updated to account for PassInstrumentationAnalysis being run

* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
  Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.

Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858

llvm-svn: 342544
2018-09-19 12:25:52 +00:00
Nicola Zaghen d34e60ca85 Rename DEBUG macro to LLVM_DEBUG.
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.

In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.

Differential Revision: https://reviews.llvm.org/D43624

llvm-svn: 332240
2018-05-14 12:53:11 +00:00
Vedant Kumar d319674a81 Fixed spelling mistake in comments of LLVM Analysis passes
Patch by Reshabh Sharma!

Differential Revision: https://reviews.llvm.org/D43861

llvm-svn: 326352
2018-02-28 19:08:52 +00:00
Sanjoy Das def1729dc4 Use a BumpPtrAllocator for Loop objects
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.

Reviewers: chandlerc

Subscribers: mehdi_amini, mcrosier, llvm-commits

Differential Revision: https://reviews.llvm.org/D38201

llvm-svn: 314375
2017-09-28 02:45:42 +00:00
Chandler Carruth 7376ae88eb [PM/CGSCC] Teach the CGSCC pass manager components to gracefully handle
invalidated SCCs even when we do not have an updated SCC to redirect
towards.

This comes up in a fairly subtle and surprising circumstance: we need to
have a connected but internal node in the call graph which later becomes
a disconnected island, and then gets deleted. All of this needs to
happen mid-CGSCC walk. Because it is disconnected, we have no way of
computing a new "current" SCC when it gets deleted. Instead, we need to
explicitly check for a deleted "current" SCC and bail out of the current
CGSCC step. This will bubble all the way up to the post-order walk and
then resume correctly.

I've included minimal tests for this bug. The specific behavior
matches something we've seen in the wild with the new PM combined with
ThinLTO and sample PGO, but I've not yet confirmed whether this is the
only issue there.

llvm-svn: 313242
2017-09-14 08:33:57 +00:00
Eugene Zelenko fa6434bebb [Analysis] Fix some Clang-tidy modernize-use-using and Include What You Use warnings; other minor fixes. Also affected in files (NFC).
llvm-svn: 312289
2017-08-31 21:56:16 +00:00
Chandler Carruth 19913b22c0 [PM] Switch the CGSCC debug messages to use the standard LLVM debug
printing techniques with a DEBUG_TYPE controlling them.

It was a mistake to start re-purposing the pass manager `DebugLogging`
variable for generic debug printing -- those logs are intended to be
very minimal and primarily used for testing. More detailed and
comprehensive logging doesn't make sense there (it would only make for
brittle tests).

Moreover, we kept forgetting to propagate the `DebugLogging` variable to
various places making it also ineffective and/or unavailable. Switching
to `DEBUG_TYPE` makes this a non-issue.

llvm-svn: 310695
2017-08-11 05:47:13 +00:00
Chandler Carruth 23c2f44cc7 [LCG] Switch one of the update methods for the LazyCallGraph to support
limited batch updates.

Specifically, allow removing multiple reference edges starting from
a common source node. There are a few constraints that play into
supporting this form of batching:

1) The way updates occur during the CGSCC walk, about the most we can
   functionally batch together are those with a common source node. This
   also makes the batching simpler to implement, so it seems
   a worthwhile restriction.
2) The far and away hottest function for large C++ files I measured
   (generated code for protocol buffers) showed a huge amount of time
   was spent removing ref edges specifically, so it seems worth focusing
   there.
3) The algorithm for removing ref edges is very amenable to this
   restricted batching. There are just both API and implementation
   special casing for the non-batch case that gets in the way. Once
   removed, supporting batches is nearly trivial.

This does modify the API in an interesting way -- now, we only preserve
the target RefSCC when the RefSCC structure is unchanged. In the face of
any splits, we create brand new RefSCC objects. However, all of the
users were OK with it that I could find. Only the unittest needed
interesting updates here.

How much does batching these updates help? I instrumented the compiler
when run over a very large generated source file for a protocol buffer
and found that the majority of updates are intrinsically updating one
function at a time. However, nearly 40% of the total ref edges removed
are removed as part of a batch of removals greater than one, so these
are the cases batching can help with.

When compiling the IR for this file with 'opt' and 'O3', this patch
reduces the total time by 8-9%.

Differential Revision: https://reviews.llvm.org/D36352

llvm-svn: 310450
2017-08-09 09:05:27 +00:00
Chandler Carruth 6e35c31d2d [PM] Fix a likely more critical infloop bug in the CGSCC pass manager.
This was just a bad oversight on my part. The code in question should
never have worked without this fix. But it turns out, there are
relatively few places that involve libfunctions that participate in
a single SCC, and unless they do, this happens to not matter.

The effect of not having this correct is that each time through this
routine, the edge from write_wrapper to write was toggled between a call
edge and a ref edge. First time through, it becomes a demoted call edge
and is turned into a ref edge. Next time it is a promoted call edge from
a ref edge. On, and on it goes forever.

I've added the asserts which should have always been here to catch silly
mistakes like this in the future as well as a test case that will
actually infloop without the fix.

The other (much scarier) infinite-inlining issue I think didn't actually
occur in practice, and I simply misdiagnosed this minor issue as that
much more scary issue. The other issue *is* still a real issue, but I'm
somewhat relieved that so far it hasn't happened in real-world code
yet...

llvm-svn: 310342
2017-08-08 10:13:23 +00:00
Chandler Carruth 3c6a820ce3 [PM] Add a comment clarifying what a particular predicate is doing.
This came up as a point of confusion while working on a fundamental
problem with the combination of CGSCC iteration and the inliner.

llvm-svn: 309662
2017-08-01 06:40:11 +00:00
Chandler Carruth f59a838720 [PM/LCG] Teach the LazyCallGraph to maintain reference edges from every
function to every defined function known to LLVM as a library function.

LLVM can introduce calls to these functions either by replacing other
library calls or by recognizing patterns (such as memset_pattern or
vector math patterns) and replacing those with calls. When these library
functions are actually defined in the module, we need to have reference
edges to them initially so that we visit them during the CGSCC walk in
the right order and can effectively rebuild the call graph afterward.

This was discovered when building code with Fortify enabled as that is
a common case of both inline definitions of library calls and
simplifications of code into calling them.

This can in extreme cases of LTO-ing with libc introduce *many* more
reference edges. I discussed a bunch of different options with folks but
all of them are unsatisfying. They either make the graph operations
substantially more complex even when there are *no* defined libfuncs, or
they introduce some other complexity into the callgraph. So this patch
goes with the simplest possible solution of actual synthetic reference
edges. If this proves to be a memory problem, I'm happy to implement one
of the clever techniques to save memory here.

llvm-svn: 308088
2017-07-15 08:08:19 +00:00
Chandler Carruth 051bdb0b22 [PM] Fix a silly bug in my recent update to the CG update logic.
I used the wrong variable to update. This was even covered by a unittest
I wrote, and the comments for the unittest were correct (if confusing)
but the test itself just matched the buggy behavior. =[

llvm-svn: 307764
2017-07-12 09:08:11 +00:00
Chandler Carruth c213c67df8 [PM] Fix a nasty bug in the new PM where we failed to properly
invalidation of analyses when merging SCCs.

While I've added a bunch of testing of this, it takes something much
more like the inliner to really trigger this as you need to have
partially-analyzed SCCs with updates at just the right time. So I've
added a direct test for this using the inliner and verifying the
domtree. Without the changes here, this test ends up finding a stale
dominator tree.

However, to handle this properly, we need to invalidate analyses
*before* merging the SCCs. After talking to Philip and Sanjoy about this
they convinced me this was the right approach. To do this, we need
a callback mechanism when merging SCCs so we can observe the cycle that
will be merged before the merge happens. This API update ended up being
surprisingly easy.

With this commit, the new PM passes the test-suite again. It hadn't
since MemorySSA was enabled for EarlyCSE as that also will find this bug
very quickly.

llvm-svn: 307498
2017-07-09 13:45:11 +00:00
Chandler Carruth 7c8964d885 [PM] Add unittesting of the call graph update logic with complex
dependencies between analyses.

This uncovers even more issues with the proxies and the splitting apart
of SCCs which are fixed in this patch. I discovered this while trying to
add more rigorous testing for a change I'm making to the call graph
update invalidation logic.

llvm-svn: 307497
2017-07-09 13:16:55 +00:00
Chandler Carruth bd9c29039e [PM] Finish implementing and fix a chain of bugs uncovered by testing
the invalidation propagation logic from an SCC to a Function.

I wrote the infrastructure to test this but didn't actually use it in
the unit test where it was designed to be used. =[ My bad. Once
I actually added it to the test case I discovered that it also hadn't
been properly implemented, so I've implemented it. The logic in the FAM
proxy for an SCC pass to propagate invalidation follows the same ideas
as the FAM proxy for a Module pass, but the implementation is a bit
different to reflect the fact that it is forwarding just for an SCC.

However, implementing this correctly uncovered a surprising "bug" (it
was conservatively correct but relatively very expensive) in how we
handle invalidation when splitting one SCC into multiple SCCs. We did an
eager invalidation when in reality we should be deferring invaliadtion
for the *current* SCC to the CGSCC pass manager and just invaliating the
newly constructed SCCs. Otherwise we end up invalidating too much too
soon. This was exposed by the inliner test case that I've updated. Now,
we invalidate *just* the split off '(test1_f)' SCC when doing the CG
update, and then the inliner finishes and invalidates the '(test1_g,
test1_h)' SCC's analyses. The first few attempts at fixing this hit
still more bugs, but all of those are covered by existing tests. For
example, the inliner should also preserve the FAM proxy to avoid
unnecesasry invalidation, and this is safe because the CG update
routines it uses handle any necessary adjustments to the FAM proxy.

Finally, the unittests for the CGSCC pass manager needed a bunch of
updates where we weren't correctly preserving the FAM proxy because it
hadn't been fully implemented and failing to preserve it didn't matter.

Note that this doesn't yet fix the current crasher due to MemSSA finding
a stale dominator tree, but without this the fix to that crasher doesn't
really make any sense when testing because it relies on the proxy
behavior.

llvm-svn: 307487
2017-07-09 03:59:31 +00:00
Chandler Carruth aaad9f84be [PM/LCG] Teach the LazyCallGraph how to replace a function without
disturbing the graph or having to update edges.

This is motivated by porting argument promotion to the new pass manager.
Because of how LLVM IR Function objects work, in order to change their
signature a new object needs to be created. This is efficient and
straight forward in the IR but previously was very hard to implement in
LCG. We could easily replace the function a node in the graph
represents. The challenging part is how to handle updating the edges in
the graph.

LCG previously used an edge to a raw function to represent a node that
had not yet been scanned for calls and references. This was the core
of its laziness. However, that model causes this kind of update to be
very hard:
1) The keys to lookup an edge need to be `Function*`s that would all
   need to be updated when we update the node.
2) There will be some unknown number of edges that haven't transitioned
   from `Function*` edges to `Node*` edges.

All of this complexity isn't necessary. Instead, we can always build
a node around any function, always pointing edges at it and always using
it as the key to lookup an edge. To maintain the laziness, we need to
sink the *edges* of a node into a secondary object and explicitly model
transitioning a node from empty to populated by scanning the function.
This design seems much cleaner in a number of ways, but importantly
there is now exactly *one* place where the `Function*` has to be
updated!

Some other cleanups that fall out of this include having something to
model the *entry* edges more accurately. Rather than hand rolling parts
of the node in the graph itself, we have an explicit `EdgeSequence`
object that gives us exactly the functionality needed. We also have
a consistent place to define the edge iterators and can use them for
both the entry edges and the internal edges of the graph.

The API used to model the separation between a node and its edges is
intentionally very thin as most clients are expected to deal with nodes
that have populated edges. We model this exactly as an optional does
with an additional method to populate the edges when that is
a reasonable thing for a client to do. This is based on API design
suggestions from Richard Smith and David Blaikie, credit goes to them
for helping pick how to model this without it being either too explicit
or too implicit.

The patch is somewhat noisy due to shifting around iterator types and
new syntax for walking the edges of a node, but most of the
functionality change is in the `Edge`, `EdgeSequence`, and `Node` types.

Differential Revision: https://reviews.llvm.org/D29577

llvm-svn: 294653
2017-02-09 23:24:13 +00:00
Chandler Carruth 346542b769 Revert r293017 and fix the actual underlying issue.
The patch committed in r293017, as discussed on the list, doesn't really
make sense but was causing an actual issue to go away.

The issue turns out to be that in one place the extra template arguments
were dropped from the OuterAnalysisManagerProxy. This in turn caused the
types used in one set of places to access the key to be completely
different from the types used in another set of places for both Loop and
CGSCC cases where there are extra arguments.

I have literally no idea how anything seemed to work with this bug in
place. It blows my mind. But it did except for mingw64 in a DLL build.

I've added a really handy static assert that helps ensure we don't break
this in the future. It immediately diagnoses the issue with a compile
failure and a very clear error message. Much better that staring at
backtraces on a build bot. =]

llvm-svn: 294267
2017-02-07 01:50:48 +00:00
Chandler Carruth 2e0fe3e65b [PM/LCG] Remove the lazy RefSCC formation from the LazyCallGraph during
iteration.

The lazy formation of RefSCCs isn't really the most important part of
the laziness here -- that has to do with walking the functions
themselves -- and isn't essential to maintain. Originally, there were
incremental update algorithms that relied on updates happening
predominantly near the most recent RefSCC formed, but those have been
replaced with ones that have much tighter general case bounds at this
point. We do still perform asserts that only scale well due to this
incrementality, but those are easy to place behind EXPENSIVE_CHECKS.

Removing this simplifies the entire analysis by having a single up-front
step that builds all of the RefSCCs in a direct Tarjan walk. We can even
easily replace this with other or better algorithms at will and with
much less confusion now that there is no iterator-based incremental
logic involved. This removes a lot of complexity from LCG.

Another advantage of moving in this direction is that it simplifies
testing the system substantially as we no longer have to worry about
observing and mutating the graph half-way through the RefSCC formation.

We still need a somewhat special iterator for RefSCCs because we want
the iterator to remain stable in the face of graph updates. However,
this now merely involves relative indexing to the current RefSCC's
position in the sequence which isn't too hard.

Differential Revision: https://reviews.llvm.org/D29381

llvm-svn: 294227
2017-02-06 19:38:06 +00:00
NAKAMURA Takumi 28dc4d5122 Rewind instantiations of OuterAnalysisManagerProxy in r289317, r291651, and r291662.
I found root class should be instantiated for variadic tempate to instantiate static member explicitly.

This will fix failures in mingw DLL build.

llvm-svn: 293017
2017-01-25 04:26:29 +00:00
Chandler Carruth 443e57e01d [PM] Teach the CGSCC's CG update utility to more carefully invalidate
analyses when we're about to break apart an SCC.

We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
   a proxy that will convey the invalidation to functions!

Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.

Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.

The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.

While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.

With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.

llvm-svn: 290664
2016-12-28 10:34:50 +00:00
Chandler Carruth ba90ae969c [PM] Introduce the facilities for registering cross-IR-unit dependencies
that require deferred invalidation.

This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.

Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.

To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.

We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.

I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.

Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.

Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.

Differential Revision: https://reviews.llvm.org/D27198

llvm-svn: 290594
2016-12-27 08:40:39 +00:00
Chandler Carruth 9c36c922d9 [PM] Remove now-dead extern template and explicit instantiation
declarations.

We're using a custom class here instead of the helper template, these
bits just didn't get deleted when the other bits did get deleted. This
was found by a really nice MSVC warning about explicitly instantiating
a template where some member functions aren't defined and thus can't be
instantiatied.

llvm-svn: 290327
2016-12-22 07:14:33 +00:00
Chandler Carruth 66a9568408 [PM] Rework a loop in the CGSCC update logic to be more conservative and
clear. The current RefSCC can occur in exactly one position so we should
just enforce that and leverage the property rather than checking for it
anywhere.

This addresses review comments made on another patch.

llvm-svn: 290162
2016-12-20 03:32:17 +00:00
Chandler Carruth 6b9816477b [PM] Support invalidation of inner analysis managers from a pass over the outer IR unit.
Summary:
This never really got implemented, and was very hard to test before
a lot of the refactoring changes to make things more robust. But now we
can test it thoroughly and cleanly, especially at the CGSCC level.

The core idea is that when an inner analysis manager proxy receives the
invalidation event for the outer IR unit, it needs to walk the inner IR
units and propagate it to the inner analysis manager for each of those
units. For example, each function in the SCC needs to get an
invalidation event when the SCC gets one.

The function / module interaction is somewhat boring here. This really
becomes interesting in the face of analysis-backed IR units. This patch
effectively handles all of the CGSCC layer's needs -- both invalidating
SCC analysis and invalidating function analysis when an SCC gets
invalidated.

However, this second aspect doesn't really handle the
LoopAnalysisManager well at this point. That one will need some change
of design in order to fully integrate, because unlike the call graph,
the entire function behind a LoopAnalysis's results can vanish out from
under us, and we won't even have a cached API to access. I'd like to try
to separate solving the loop problems into a subsequent patch though in
order to keep this more focused so I've adapted them to the API and
updated the tests that immediately fail, but I've not added the level of
testing and validation at that layer that I have at the CGSCC layer.

An important aspect of this change is that the proxy for the
FunctionAnalysisManager at the SCC pass layer doesn't work like the
other proxies for an inner IR unit as it doesn't directly manage the
FunctionAnalysisManager and invalidation or clearing of it. This would
create an ever worsening problem of dual ownership of this
responsibility, split between the module-level FAM proxy and this
SCC-level FAM proxy. Instead, this patch changes the SCC-level FAM proxy
to work in terms of the module-level proxy and defer to it to handle
much of the updates. It only does SCC-specific invalidation. This will
become more important in subsequent patches that support more complex
invalidaiton scenarios.

Reviewers: jlebar

Subscribers: mehdi_amini, mcrosier, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D27197

llvm-svn: 289317
2016-12-10 06:34:44 +00:00
Chandler Carruth 8977223e55 [PM] Basic cleanups to CGSCC update code, NFC.
Just using InstIterator, simpler loop structures, and making better use
of the visit callback infrastructure.

llvm-svn: 288790
2016-12-06 10:06:06 +00:00
Chandler Carruth 3ab2a5a824 [PM] Extend the explicit 'invalidate' method API on analysis results to
accept an Invalidator that allows them to invalidate themselves if their
dependencies are in turn invalidated.

Rather than recording the dependency graph ahead of time when analysis
get results from other analyses, this simply lets each result trigger
the immediate invalidation of any analyses they actually depend on. They
do this in a way that has three nice properties:

1) They don't have to handle transitive dependencies because the
   infrastructure will recurse for them.
2) The invalidate methods are still called only once. We just
   dynamically discover the necessary topological ordering, everything
   is memoized nicely.
3) The infrastructure still provides a default implementation and can
   access it so that only analyses which have dependencies need to do
   anything custom.

To make this work at all, the invalidation logic also has to defer the
deletion of the result objects themselves so that they can remain alive
until we have collected the complete set of results to invalidate.

A unittest is added here that has exactly the dependency pattern we are
concerned with. It hit the use-after-free described by Sean in much
detail in the long thread about analysis invalidation before this
change, and even in an intermediate form of this change where we failed
to defer the deletion of the result objects.

There is an important problem with doing dependency invalidation that
*isn't* solved here: we don't *enforce* that results correctly
invalidate all the analyses whose results they depend on.

I actually looked at what it would take to do that, and it isn't as hard
as I had thought but the complexity it introduces seems very likely to
outweigh the benefit. The technique would be to provide a base class for
an analysis result that would be populated with other results, and
automatically provide the invalidate method which immediately does the
correct thing. This approach has some nice pros IMO:
- Handles the case we care about and nothing else: only *results*
  that depend on other analyses trigger extra invalidation.
- Localized to the result rather than centralized in the analysis
  manager.
- Ties the storage of the reference to another result to the triggering
  of the invalidation of that analysis.
- Still supports extending invalidation in customized ways.

But the down sides here are:
- Very heavy-weight meta-programming is needed to provide this base
  class.
- Requires a pretty awful API for accessing the dependencies.

Ultimately, I fear it will not pull its weight. But we can re-evaluate
this at any point if we start discovering consistent problems where the
invalidation and dependencies get out of sync. It will fit as a clean
layer on top of the facilities in this patch that we can add if and when
we need it.

Note that I'm not really thrilled with the names for these APIs... The
name "Invalidator" seems ok but not great. The method name "invalidate"
also. In review some improvements were suggested, but they really need
*other* uses of these terms to be updated as well so I'm going to do
that in a follow-up commit.

I'm working on the actual fixes to various analyses that need to use
these, but I want to try to get tests for each of them so we don't
regress. And those changes are seperable and obvious so once this goes
in I should be able to roll them out throughout LLVM.

Many thanks to Sean, Justin, and others for help reviewing here.

Differential Revision: https://reviews.llvm.org/D23738

llvm-svn: 288077
2016-11-28 22:04:31 +00:00
Chandler Carruth 0c6efff178 [PM] Remove weird marking of invalidated analyses as "preserved".
This never made a lot of sense. They've been invalidated for one IR unit
but they aren't really preserved in any normal sense. It seemed like it
would be an elegant way of communicating to outer IR units that pass
managers and adaptors had already handled invalidation, but we've since
ended up adding sets that model this more clearly: we're now using
the 'AllAnalysesOn<IRUnitT>' set to handle cases where the trick of
"preserving" invalidated analyses didn't work.

This patch moves to rely on that technique exclusively and removes the
cumbersome API aspect of updating the preserved set when doing
invalidation. This in turn will simplify a *number* of upcoming patches.

This has a side benefit of exposing a number of places where we were
failing to mark the 'AllAnalysesOn<IRUnitT>' set as preserved. This
patch fixes those, and with those fixes shouldn't change any observable
behavior.

llvm-svn: 288023
2016-11-28 10:42:21 +00:00
NAKAMURA Takumi b673b16857 Fixup r279618, instantiate *AnalysisManagerProxy<*AnalysisManager,LazyCallGraph::SCC>, instead of *AnalysisManagerProxy<*AnalysisManager,LazyCallGraph::SCC,LazyCallGraph&>, for PassID.
Or they were not instantiated as expected;

  llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID
  llvm::InnerAnalysisManagerProxy<llvm::AnalysisManager<llvm::Function>, llvm::LazyCallGraph::SCC>::PassID

llvm-svn: 280105
2016-08-30 15:47:13 +00:00