value is zero. Instead of a cmov + op, issue an conditional op instead. e.g.
cmp r9, r4
mov r4, #0
moveq r4, #1
orr lr, lr, r4
should be:
cmp r9, r4
orreq lr, lr, #1
That is, optimize (or x, (cmov 0, y, cond)) to (or.cond x, y). Similarly extend
this to xor as well as (and x, (cmov -1, y, cond)) => (and.cond x, y).
It's possible to extend this to ADD and SUB but I don't think they are common.
rdar://8659097
llvm-svn: 151224
The standard function epilog includes a .size directive, but ppc64 uses
an alternate local symbol to tag the actual start of each function.
Until recently, binutils accepted the .size directive as:
.size test1, .Ltmp0-test1
however, using this directive with recent binutils will result in the error:
.size expression for XXX does not evaluate to a constant
so we must use the label which actually tags the start of the function.
llvm-svn: 151200
Add some data structures to represent for loops. These will be
referenced during object processing to do any needed iteration and
instantiation.
Add foreach keyword support to the lexer.
Add a mode to indicate that we're parsing a foreach loop. This allows
the value parser to early-out when processing the foreach value list.
Add a routine to parse foreach iteration declarations. This is
separate from ParseDeclaration because the type of the named value
(the iterator) doesn't match the type of the initializer value (the
value list). It also needs to add two values to the foreach record:
the iterator and the value list.
Add parsing support for foreach.
Add the code to process foreach loops and create defs based
on iterator values.
Allow foreach loops to be matched at the top level.
When parsing an IDValue check if it is a foreach loop iterator for one
of the active loops. If so, return a VarInit for it.
Add Emacs keyword support for foreach.
Add VIM keyword support for foreach.
Add tests to check foreach operation.
Add TableGen documentation for foreach.
Support foreach with multiple objects.
Support non-braced foreach body with one object.
Do not require types for the foreach declaration. Assume the iterator
type from the iteration list element type.
llvm-svn: 151164
chip in r139383, and the PSP components of the triple are really
annoying to parse. Let's leave this chapter behind. There is no reason
to expect LLVM to see a PSP-related triple these days, and so no
reasonable motivation to support them.
It might be reasonable to prune a few of the older MIPS triple forms in
general, but as those at least cause no burden on parsing (they aren't
both a chip and an OS!), I'm happy to leave them in for now.
llvm-svn: 151156
Affect on SD scheduling and postRA scheduling:
Printing the DAG will display the nodes in top-down topological order.
This matches the order within the MBB and makes my life much easier in general.
Affect on misched:
We don't need to track virtual register uses at all. This is awesome.
I also intend to rely on the SUnit ID as a topo-sort index. So if A < B then we cannot have an edge B -> A.
llvm-svn: 151135
This makes RAFast 4% faster, and it gets rid of the dodgy DenseMap
iteration.
This also revealed that RAFast would sometimes dereference DenseMap
iterators after erasing other elements from the map. That does seem to
work in the current DenseMap implementation, but SparseSet doesn't allow
it.
llvm-svn: 151111
For objects that can be identified by small unsigned keys, SparseSet
provides constant time clear() and fast deterministic iteration. Insert,
erase, and find operations are typically faster than hash tables.
SparseSet is useful for keeping information about physical registers,
virtual registers, or numbered basic blocks.
llvm-svn: 151110
This test case was way too strict, matching the entire assembly output.
Every non-trivial change to the ppc backend or -O0 pipeline required
the test to be updated.
It should be replaced with a test of the specific vaarg feature.
llvm-svn: 151105
bundles. This method takes a bundle start and an MI being bundled, and makes
the intervals for the MI's operands appear to start/end on the bundle start.
Also fixes some minor cosmetic issues (whitespace, naming convention) in the
HMEditor code.
llvm-svn: 151099
they'll be simple enough to simulate, and to reduce the chance we'll encounter
equal but different simple pointer constants.
This removes the symptoms from PR11352 but is not a full fix. A proper fix would
either require a guarantee that two constant objects we simulate are folded
when equal, or a different way of handling equal pointers (ie., trying a
constantexpr icmp on them to see whether we know they're equal or non-equal or
unsure).
llvm-svn: 151093
This transformation is not safe in some pathological cases (signed icmp of pointers should be an
extremely rare thing, but it's valid IR!). Add an explanatory comment.
Kudos to Duncan for pointing out this edge case (and not giving up explaining it until I finally got it).
llvm-svn: 151055
They're private static methods but we can just make them static
functions in the implementation. It makes the implementations a touch
more wordy, but takes another chunk out of the header file.
Also, take the opportunity to switch the names to the new coding
conventions.
No functionality changed here.
llvm-svn: 151047
Passes after RegAlloc should be able to rely on MRI->getNumVirtRegs() == 0.
This makes sharing code for pre/postRA passes more robust.
Now, to check if a pass is running before the RA pipeline begins, use MRI->isSSA().
To check if a pass is running after the RA pipeline ends, use !MRI->getNumVirtRegs().
PEI resets virtual regs when it's done scavenging.
PTX will either have to provide its own PEI pass or assign physregs.
llvm-svn: 151032
construction. Simplify its interface, implementation, and users
accordingly as there is no longer an 'uninitialized' state to check for.
Also, fixes a bug lurking in the interface as there was one method that
didn't correctly check for initialization.
llvm-svn: 151024
know where users will be added. Because of this, it cannot use
Builder.GetInsertPoint at all.
This patch
* removes the FIXME about adding the assert.
* adds a comment explaining hy we don't have one.
* removes a broken logic that only works for some callers and is not needed
since r150884.
* adds an assert to caller that would have caught the bug fixed by r150884.
llvm-svn: 151015
ecx = mov eax
al = mov ch
The second copy is not a nop because the sub-indices of ecx,ch is not the
same of that of eax/al.
Re-enabled machine-cp.
PR11940
llvm-svn: 151002
- Ignore pointer casts.
- Also expand GEPs that aren't constantexprs when they have one use or only constant indices.
- We now compile "&foo[i] - &foo[j]" into "i - j".
llvm-svn: 150961
the cast. If we do, we can end up with
inst1
--------------- < Insertion point
dbg inst
new inst
instead of the desired
inst1
new inst
--------------- < Insertion point
dbg inst
Another option would be for InsertNoopCastOfTo (or its callers) to move the
insertion point and we would end up with
inst1
dbg inst
new inst
--------------- < Insertion point
but that complicates the callers. This fixes PR12018 (and firefox's build).
llvm-svn: 150884
MRI keeps track of which physregs have been used. Make sure it gets
updated with all the regmask-clobbered registers.
Delete the closePhysRegsUsed() function which isn't necessary.
llvm-svn: 150830
metadata may still unwind, but only in ways that the ARC
optimizer doesn't need to consider. This permits more
aggressive optimization.
llvm-svn: 150829
any changes.
Internally this adds a private inner class HMEditor, to LiveIntervals. HMEditor provides
an API for updating live intervals when code is moved or bundled.
llvm-svn: 150826
This caused miscompilations on out-of-tree targets, and possibly i386 as
well.
I'll find some other way of hoisting %rip-relative loads from loops
containing calls.
llvm-svn: 150816
Fix the type of eh_frame on Solaris so that Sun ld doesn't fail to combine them (thus making it impossible for the unwind library to find them and breaking exceptions).
llvm-svn: 150814
useful to represent a variable that is const in the source but can't be constant
in the IR because of a non-trivial constructor. If globalopt evaluates the
constructor, and there was an invariant.start with no matching invariant.end
possible, it will mark the global constant afterwards.
llvm-svn: 150794
processor, due to the Atom scheduler producing an instruction sequence that is
different from that which is expected.
Patch by Michael Spencer!
llvm-svn: 150736
Call clobbers are now represented with register mask operands. The
regmask can easily represent the fact that xmm6 is call-preserved while
ymm6 isn't. This is automatically computed by TableGen from the
CalleeSavedRegs containing xmm6.
llvm-svn: 150709
Call instructions no longer have a list of 43 call-clobbered registers.
Instead, they get a single register mask operand with a bit vector of
call-preserved registers.
This saves a lot of memory, 42 x 32 bytes = 1344 bytes per call
instruction, and it speeds up building call instructions because those
43 imp-def operands no longer need to be added to use-def lists. (And
removed and shifted and re-added for every explicit call operand).
Passes like LiveVariables, LiveIntervals, RAGreedy, PEI, and
BranchFolding are significantly faster because they can deal with call
clobbers in bulk.
Overall, clang -O2 is between 0% and 8% faster, uniformly distributed
depending on call density in the compiled code. Debug builds using
clang -O0 are 0% - 3% faster.
I have verified that this patch doesn't change the assembly generated
for the LLVM nightly test suite when building with -disable-copyprop
and -disable-branch-fold.
Branch folding behaves slightly differently in a few cases because call
instructions have different hash values now.
Copy propagation flushes its data structures when it crosses a register
mask operand. This causes it to leave a few dead copies behind, on the
order of 20 instruction across the entire nightly test suite, including
SPEC. Fixing this properly would require the pass to use different data
structures.
llvm-svn: 150638
The existing framework for postra scheduling is library local. We want to keep it that way. Soon we will have a more general MachineScheduler interface. At that time, various bits will be exposed to targets. In the meantime, the VLIWPacketizer wants to use ScheduleDAGInstrs directly, so it needs to wrapped in a PIMPL to avoid exposing it to the target interface.
llvm-svn: 150633
method. This allows the target lowering code to not have to deal with MDNodes.
Also, avoid leaking memory like a sieve by not creating a global variable for
the image info section, but just emitting the code directly.
llvm-svn: 150624
Accomplished by moving the body of StringRef::edit_distance into
a separate function that accepts two ArrayRefs, and making
StringRef::edit_distance a wrapper around the new function.
llvm-svn: 150621
The c'tor list is stored as a list of 'void ()*'s, so all of the functions are
bitcast to that. However, the dyn_cast doesn't automagically look through
bitcasts. Do that for it.
<rdar://problem/10813350>
llvm-svn: 150572
The llc command line options for enabling/disabling passes are local to CodeGen/Passes.cpp. This patch associates those options with standard pass IDs so they work regardless of how the target configures the passes.
A target has two ways of overriding standard passes:
1) Redefine the pass pipeline (override TargetPassConfig::add%Stage)
2) Replace or suppress individiual passes with TargetPassConfig::substitutePass.
In both cases, the command line options associated with the pass override the target default.
For example, say a target wants to disable machine instruction scheduling by default:
- The target calls disablePass(MachineSchedulerID) but otherwise does not override any TargetPassConfig methods.
- Without any llc options, no scheduler is run.
- With -enable-misched, the standard machine scheduler is run and honors the -misched=... flag to select the scheduler variant, which may be used for performance evaluation or testing.
Sorry overridePass is ugly. I haven't thought of a better way without replacing the cl::opt framework. I hope to do that one day...
I haven't figured out why CodeGen uses char& for pass IDs. AnalysisID is much easier to use and less bug prone. I'm using it wherever I can for internal implementation. Maybe later we can change the global pass ID definitions as well.
llvm-svn: 150563
Pretend that regmask interference ends at the 'dead' slot, even when
there is other interference ending at the 'reg' slot of the same
instruction.
llvm-svn: 150531
Only accept register masks when looking for an 'overlapping' def. When
Overlap is not set, the function searches for a proper definition of
Reg.
This means MI->modifiesRegister() considers register masks, but
MI->definesRegister() doesn't.
llvm-svn: 150529
When a physreg is live in to a basic block, look for any instruction in
the block that clobbers the physreg.
The instruction doesn't have to properly redefine the register, any
overlapping clobber is OK.
This slightly changes live ranges when compiling with register masks.
llvm-svn: 150528
The MachO back-end needs to emit the garbage collection flags specified in the
module flags. This is a WIP, so the front-end hasn't been modified to emit these
flags just yet. Documentation and front-end switching to occur soon.
llvm-svn: 150507
that are greater than the vector element type. For example BUILD_VECTOR
of type <1 x i1> with a constant i8 operand.
This patch fixes the assertion.
llvm-svn: 150477
This folds a simple loop tail into a loop latch. It covers the common (in fortran) case of postincrement loops. It's a "free" way to expose this type of loop to downstream loop optimizations that bail out on non-canonical loops (getLoopLatch is a heavily used check).
llvm-svn: 150439