This should fix http://llvm.org/bugs/show_bug.cgi?id=17976
Another test checking for the global variables' locations and prefixes on Darwin will be committed separately.
llvm-svn: 198017
Summary:
Before this change the instrumented code before Ret instructions looked like:
<Unpoison Frame Redzones>
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
Now the instrumented code looks like:
if (Frame != OriginalFrame) // I.e. Frame is fake
<Poison Complete Frame>
else
<Unpoison Frame Redzones>
Reviewers: eugenis
Reviewed By: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2458
llvm-svn: 197907
Currently SplitBlockAndInsertIfThen requires that branch condition is an
Instruction itself, which is very inconvenient, because it is sometimes an
Operator, or even a Constant.
llvm-svn: 197677
It was failing because ASan was adding all of the following to one
function:
- dynamic alloca
- stack realignment
- inline asm
This patch avoids making the static alloca dynamic when coverage is
used.
ASan should probably not be inserting empty inline asm blobs to inhibit
duplicate tail elimination.
llvm-svn: 196973
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
llvm-svn: 196568
This currently breaks clang/test/CodeGen/code-coverage.c. The root cause
is that the newly introduced access to Funcs[j] is out of bounds.
llvm-svn: 196365
gcov expects every function to contain an entry block that
unconditionally branches into the next block. clang does not implement
basic blocks in this manner, so gcov did not output correct branch info
if the entry block branched to multiple blocks.
This change splits every function's entry block into an empty block and
a block with the rest of the instructions. The instrumentation code will
take care of the rest.
llvm-svn: 195513
The new command line flags are -dfsan-ignore-pointer-label-on-store and -dfsan-ignore-pointer-label-on-load. Their default value matches the current labelling scheme.
Additionally, the function __dfsan_union_load is marked as readonly.
Patch by Lorenzo Martignoni!
Differential Revision: http://llvm-reviews.chandlerc.com/D2187
llvm-svn: 195382
Instead of permanently outputting "MVLL" as the file checksum, clang
will create gcno and gcda checksums by hashing the destination block
numbers of every arc. This allows for llvm-cov to check if the two gcov
files are synchronized.
Regenerated the test files so they contain the checksum. Also added
negative test to ensure error when the checksums don't match.
llvm-svn: 195191
I was able to successfully run a bootstrapped LTO build of clang with
r194701, so this change does not seem to be the cause of our failing
buildbots.
llvm-svn: 194789
This reverts commit 194701. Apple's bootstrapped LTO builds have been failing,
and this change (along with compiler-rt 194702-194704) is the only thing on
the blamelist. I will either reappy these changes or help debug the problem,
depending on whether this fixes the buildbots.
llvm-svn: 194780
Indirect call wrapping helps MSanDR (dynamic instrumentation companion tool
for MSan) to catch all cases where execution leaves a compiler-instrumented
module by allowing the tool to rewrite targets of indirect calls.
This change is an optimization that skips wrapping for calls when target is
inside the current module. This relies on the linker providing symbols at the
begin and end of the module code (or code + data, does not really matter).
Gold linker provides such symbols by default. GNU (BFD) linker needs a link
flag: -Wl,--defsym=__executable_start=0.
More info:
https://code.google.com/p/memory-sanitizer/wiki/MSanDR#Native_exec
llvm-svn: 194697
LLVM optimizers may widen accesses to packed structures that overflow the structure itself, but should be in bounds up to the alignment of the object
llvm-svn: 193317
Summary:
Given a global array G[N], which is declared in this CU and has static initializer
avoid instrumenting accesses like G[i], where 'i' is a constant and 0<=i<N.
Also add a bit of stats.
This eliminates ~1% of instrumentations on SPEC2006
and also partially helps when asan is being run together with coverage.
Reviewers: samsonov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1947
llvm-svn: 192794
Currently MSan checks that arguments of *cvt* intrinsics are fully initialized.
That's too much to ask: some of them only operate on lower half, or even
quarter, of the input register.
llvm-svn: 192599
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
llvm-svn: 191835
Adds a flag to the MemorySanitizer pass that enables runtime rewriting of
indirect calls. This is part of MSanDR implementation and is needed to return
control to the DynamiRio-based helper tool on transition between instrumented
and non-instrumented modules. Disabled by default.
llvm-svn: 191006
The work on this project was left in an unfinished and inconsistent state.
Hopefully someone will eventually get a chance to implement this feature, but
in the meantime, it is better to put things back the way the were. I have
left support in the bitcode reader to handle the case-range bitcode format,
so that we do not lose bitcode compatibility with the llvm 3.3 release.
This reverts the following commits: 155464, 156374, 156377, 156613, 156704,
156757, 156804 156808, 156985, 157046, 157112, 157183, 157315, 157384, 157575,
157576, 157586, 157612, 157810, 157814, 157815, 157880, 157881, 157882, 157884,
157887, 157901, 158979, 157987, 157989, 158986, 158997, 159076, 159101, 159100,
159200, 159201, 159207, 159527, 159532, 159540, 159583, 159618, 159658, 159659,
159660, 159661, 159703, 159704, 160076, 167356, 172025, 186736
llvm-svn: 190328
instead of having its own implementation.
The implementation of isTBAAVtableAccess is in TypeBasedAliasAnalysis.cpp
since it is related to the format of TBAA metadata.
The path for struct-path tbaa will be exercised by
test/Instrumentation/ThreadSanitizer/read_from_global.ll, vptr_read.ll, and
vptr_update.ll when struct-path tbaa is on by default.
llvm-svn: 190216
Select condition shadow was being ignored resulting in false negatives.
This change OR-s sign-extended condition shadow into the result shadow.
llvm-svn: 189785
The code was erroneously reading overflow area shadow from the TLS slot,
bypassing the local copy. Reading shadow directly from TLS is wrong, because
it can be overwritten by a nested vararg call, if that happens before va_start.
llvm-svn: 189104
DFSan changes the ABI of each function in the module. This makes it possible
for a function with the native ABI to be called with the instrumented ABI,
or vice versa, thus possibly invoking undefined behavior. A simple way
of statically detecting instances of this problem is to prepend the prefix
"dfs$" to the name of each instrumented-ABI function.
This will not catch every such problem; in particular function pointers passed
across the instrumented-native barrier cannot be used on the other side.
These problems could potentially be caught dynamically.
Differential Revision: http://llvm-reviews.chandlerc.com/D1373
llvm-svn: 189052
There are situations which can affect the correctness (or at least expectation)
of the gcov output. For instance, if a call to __gcov_flush() occurs within a
block before the execution count is registered and then the program aborts in
some way, then that block will not be marked as executed. This is not normally
what the user expects.
If we move the code that's registering when a block is executed to the
beginning, we can catch these types of situations.
PR16893
llvm-svn: 188849
Summary:
When the -dfsan-debug-nonzero-labels parameter is supplied, the code
is instrumented such that when a call parameter, return value or load
produces a nonzero label, the function __dfsan_nonzero_label is called.
The idea is that a debugger breakpoint can be set on this function
in a nominally label-free program to help identify any bugs in the
instrumentation pass causing labels to be introduced.
Reviewers: eugenis
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1405
llvm-svn: 188472
This replaces the old incomplete greylist functionality with an ABI
list, which can provide more detailed information about the ABI and
semantics of specific functions. The pass treats every function in
the "uninstrumented" category in the ABI list file as conforming to
the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
additional categories for those functions, a call to one of those
functions will produce a warning message, as the labelling behaviour
of the function is unknown. The other supported categories are
"functional", "discard" and "custom".
- "discard" -- This function does not write to (user-accessible) memory,
and its return value is unlabelled.
- "functional" -- This function does not write to (user-accessible)
memory, and the label of its return value is the union of the label of
its arguments.
- "custom" -- Instead of calling the function, a custom wrapper __dfsw_F
is called, where F is the name of the function. This function may wrap
the original function or provide its own implementation.
Differential Revision: http://llvm-reviews.chandlerc.com/D1345
llvm-svn: 188402
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D965
llvm-svn: 187923
The globals being generated here were given the 'private' linkage type. However,
this caused them to end up in different sections with the wrong prefix. E.g.,
they would be in the __TEXT,__const section with an 'L' prefix instead of an 'l'
(lowercase ell) prefix.
The problem is that the linker will eat a literal label with 'L'. If a weak
symbol is then placed into the __TEXT,__const section near that literal, then it
cannot distinguish between the literal and the weak symbol.
Part of the problems here was introduced because the address sanitizer converted
some C strings into constant initializers with trailing nuls. (Thus putting them
in the __const section with the wrong prefix.) The others were variables that
the address sanitizer created but simply had the wrong linkage type.
llvm-svn: 187827
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
A special case list can now specify categories for specific globals,
which can be used to instruct an instrumentation pass to treat certain
functions or global variables in a specific way, such as by omitting
certain aspects of instrumentation while keeping others, or informing
the instrumentation pass that a specific uninstrumentable function
has certain semantics, thus allowing the pass to instrument callers
according to those semantics.
For example, AddressSanitizer now uses the "init" category instead of
global-init prefixes for globals whose initializers should not be
instrumented, but which in all other respects should be instrumented.
The motivating use case is DataFlowSanitizer, which will have a
number of different categories for uninstrumentable functions, such
as "functional" which specifies that a function has pure functional
semantics, or "discard" which indicates that a function's return
value should not be labelled.
Differential Revision: http://llvm-reviews.chandlerc.com/D1092
llvm-svn: 185978
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
or not in cases where the user already has an IR file on disk.
llvm-svn: 185193
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135