SystemZTargetLowering::emitStringWrapper() previously loaded the character
into R0 before the loop and made R0 live on entry. I'd forgotten that
allocatable registers weren't allowed to be live across blocks at this stage,
and it confused LiveVariables enough to cause a miscompilation of f3 in
memchr-02.ll.
This patch instead loads R0 in the loop and leaves LICM to hoist it
after RA. This is actually what I'd tried originally, but I went for
the manual optimisation after noticing that R0 often wasn't being hoisted.
This bug forced me to go back and look at why, now fixed as r188774.
We should also try to optimize null checks so that they test the CC result
of the SRST directly. The select between null and the SRST GPR result could
then usually be deleted as dead.
llvm-svn: 188779
For now this matches the equivalent of (neg (abs ...)), which did hit a few
times in projects/test-suite. We should probably also match cases where
absolute-like selects are used with reversed arguments.
llvm-svn: 188671
This first cut is pretty conservative. The final argument register (R6)
is call-saved, so we would need to make sure that the R6 argument to a
sibling call is the same as the R6 argument to the calling function,
which seems worth keeping as a separate patch.
Saying that integer truncations are free means that we no longer
use the extending instructions LGF and LLGF for spills in int-conv-09.ll
and int-conv-10.ll. Instead we treat the registers as 64 bits wide and
truncate them to 32-bits where necessary. I think it's unlikely we'd
use LGF and LLGF for spills in other situations for the same reason,
so I'm removing the tests rather than replacing them. The associated
code is generic and applies to many more instructions than just
LGF and LLGF, so there is no corresponding code removal.
llvm-svn: 188669
Generalize r188163 to cope with return types other than MVT::i32, just
as the existing visitMemCmpCall code did. I've split this out into a
subroutine so that it can be used for other upcoming patches.
I also noticed that I'd used the wrong API to record the out chain.
It's a load that uses DAG.getRoot() rather than getRoot(), so the out
chain should go on PendingLoads. I don't have a testcase for that because
we don't do any interesting scheduling on z yet.
llvm-svn: 188540
r188163 used CLC to implement memcmp. Code that compares the result
directly against zero can test the CC value produced by CLC, but code
that needs an integer result must use IPM. The sequence I'd used was:
ipm <reg>
sll <reg>, 2
sra <reg>, 30
but I'd forgotten that this inverts the order, so that CC==1 ("less")
becomes an integer greater than zero, and CC==2 ("greater") becomes
an integer less than zero. This sequence should only be used if the
CLC arguments are reversed to compensate. The problem then is that
the branch condition must also be reversed when testing the CLC
result directly.
Rather than do that, I went for a different sequence that works with
the natural CLC order:
ipm <reg>
srl <reg>, 28
rll <reg>, <reg>, 31
One advantage of this is that it doesn't clobber CC. A disadvantage
is that any sign extension to 64 bits must be done separately,
rather than being folded into the shifts.
llvm-svn: 188538
This follows the same lines as the integer code. In the end it seemed
easier to have a second 4-bit mask in TSFlags to specify the compare-like
CC values. That eats one more TSFlags bit than adding a CCHasUnordered
would have done, but it feels more concise.
llvm-svn: 187883
Without explicit dependencies, both per-file action and in-CommonTableGen action could run in parallel.
It races to emit *.inc files simultaneously.
llvm-svn: 187780
This patch just uses a peephole test for "add; compare; branch" sequences
within a single block. The IR optimizers already convert loops to
decrement-and-branch-on-nonzero form in some cases, so even this
simplistic test triggers many times during a clang bootstrap and
projects/test-suite run. It looks like there are still cases where we
need to more strongly prefer branches on nonzero though. E.g. I saw a
case where a loop that started out with a check for 0 ended up with a
check for -1. I'll try to look at that sometime.
I ended up adding the Reference class because MachineInstr::readsRegister()
doesn't check for subregisters (by design, as far as I could tell).
llvm-svn: 187723
Perhaps predictably, doing comparison elimination on the fly during
SystemZLongBranch turned out to be a bad idea. The next patches make
use of LOAD AND TEST and BRANCH ON COUNT, both of which require
changes to earlier instructions.
No functionality change intended.
llvm-svn: 187718
This also fixes a bug in the predication of LR to LOCR: I'd forgotten
that with these in-place instruction builds, the implicit operands need
to be added manually. I think this was latent until now, but is tested
by int-cmp-45.c. It also adds a CC valid mask to STOC, again tested by
int-cmp-45.c.
llvm-svn: 187573
Convert >= 1 to > 0, etc. Using comparison with zero isn't a win on its own,
but it exposes more opportunities for CC reuse (the next patch).
llvm-svn: 187571
The loop optimizers were assuming that scales > 1 were OK. I think this
is actually a bug in TargetLoweringBase::isLegalAddressingMode(),
since it seems to be trying to reject anything that isn't r+i or r+r,
but it has no default case for scales other than 0, 1 or 2. Implementing
the hook for z means that z can no longer test any change there though.
llvm-svn: 187497
Extend r187495 to conditional loads. I split this out because the
easiest way seemed to be to force a particular operand order in
SystemZISelDAGToDAG.cpp.
llvm-svn: 187496
System z branches have a mask to select which of the 4 CC values should
cause the branch to be taken. We can invert a branch by inverting the mask.
However, not all instructions can produce all 4 CC values, so inverting
the branch like this can lead to some oddities. For example, integer
comparisons only produce a CC of 0 (equal), 1 (less) or 2 (greater).
If an integer EQ is reversed to NE before instruction selection,
the branch will test for 1 or 2. If instead the branch is reversed
after instruction selection (by inverting the mask), it will test for
1, 2 or 3. Both are correct, but the second isn't really canonical.
This patch therefore keeps track of which CC values are possible
and uses this when inverting a mask.
Although this is mostly cosmestic, it fixes undefined behavior
for the CIJNLH in branch-08.ll. Another fix would have been
to mask out bit 0 when generating the fused compare and branch,
but the point of this patch is that we shouldn't need to do that
in the first place.
The patch also makes it easier to reuse CC results from other instructions.
llvm-svn: 187495
r187116 moved compare-and-branch generation from the instruction-selection
pass to the peephole optimizer (via optimizeCompare). It turns out that even
this is a bit too early. Fused compare-and-branch instructions don't
interact well with predication, where a CC result is needed. They also
make it harder to reuse the CC side-effects of earlier instructions
(not yet implemented, but the subject of a later patch).
Another problem was that the AnalyzeBranch family of routines weren't
handling compares and branches, so we weren't able to reverse the fused
form in cases where we would reverse a separate branch. This could have
been fixed by extending AnalyzeBranch, but given the other problems,
I've instead moved the fusing to the long-branch pass, which is also
responsible for the opposite transformation: splitting out-of-range
compares and branches into separate compares and long branches.
I've added a test for the AnalyzeBranch problem. A test for the
predication problem is included in the next patch, which fixes a bug
in the choice of CC mask.
llvm-svn: 187494
r186399 aggressively used the RISBG instruction for immediate ANDs,
both because it can handle some values that AND IMMEDIATE can't,
and because it allows the destination register to be different from
the source. I realized later while implementing the distinct-ops
support that it would be better to leave the choice up to
convertToThreeAddress() instead. The AND IMMEDIATE form is shorter
and is less likely to be cracked.
This is a problem for 32-bit ANDs because we assume that all 32-bit
operations will leave the high word untouched, whereas RISBG used in
this way will either clear the high word or copy it from the source
register. The patch uses the z196 instruction RISBLG for this instead.
This means that z10 will be restricted to NILL, NILH and NILF for
32-bit ANDs, but I think that should be OK for now. Although we're
using z10 as the base architecture, the optimization work is going
to be focused more on z196 and zEC12.
llvm-svn: 187492
Before the patch we took advantage of the fact that the compare and
branch are glued together in the selection DAG and fused them together
(where possible) while emitting them. This seemed to work well in practice.
However, fusing the compare so early makes it harder to remove redundant
compares in cases where CC already has a suitable value. This patch
therefore uses the peephole analyzeCompare/optimizeCompareInstr pair of
functions instead.
No behavioral change intended, but it paves the way for a later patch.
llvm-svn: 187116
These instructions are allowed to trap even if the condition is false,
so for now they are only used for "*ptr = (cond ? x : *ptr)"-style
constructs.
llvm-svn: 187111
This removes the need to store the asm variant in each row of the single table that existed before. Shaves ~16K off the size of X86AsmParser.o.
llvm-svn: 187026
The atomic tests assume the two-operand forms, so I've restricted them to z10.
Running and-01.ll, or-01.ll and xor-01.ll for z196 as well as z10 shows why
using convertToThreeAddress() is better than exposing the three-operand forms
first and then converting back to two operands where possible (which is what
I'd originally tried). Using the three-operand form first stops us from
taking advantage of NG, OG and XG for spills.
llvm-svn: 186683
This first step just adds definitions for SLLK, SRLK and SRAK.
The next patch will actually make use of them during codegen.
insn-bad.s tests that some form of error is reported when using these
instructions on z10. More work is needed to get the "instruction requires:
distinct-ops" that we'd ideally like, so I've stubbed that part out for now.
I'll come back and make it mandatory once the necessary changes are in.
llvm-svn: 186680
The original code only folded SRA into ROTATE ... SELECTED BITS
if there was no outer shift. This patch splits out that check
and generalises it slightly. The extra cases aren't really that
interesting, but this is paving the way for RNSBG support.
llvm-svn: 186571
In hindsight, using "RISBG" for something that can be any type of
R.SBG instruction was a bit confusing, so this renames it to RxSBG.
That might not be the best choice either, since there is an instruction
called RXSBG, but hopefully the lower-case letter stands out enough.
While there I fixed a couple of GNUisms that had crept in --
sorry about that!
llvm-svn: 186569
Another patch in the series to make more use of R.SBG. This one extends
r186072 and r186073 to handle cases where the AND is inside the shift.
llvm-svn: 186399