slot. The easiest way to do that was to bundle up the information
we care about for aggregate slots into a new structure which demands
that its creators at least consider the question.
I could probably be convinced that the ObjC 'needs GC' bit should
be rolled into this structure.
Implement generalized copy elision. The main obstacle here is that
IR-generation must be much more careful about making sure that exactly
llvm-svn: 113962
but not in C++, so don't emit aggregate loads of volatile references
in null context in C++. Happens to have been caught by an assertion.
We do not get the scalar case right. Volatiles are really broken.
llvm-svn: 112019
implicitly-defined default constructor, zero-initialize the memory
before calling the default constructor. Previously, we would only
zero-initialize in the case of a trivial default constructor.
Also, simplify the hideous logic that determines when we have a
trivial default constructor and, therefore, don't need to emit any
call at all.
llvm-svn: 111779
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
duplication between the constant and non-constant paths in all of this.
Implement ARM ABI semantics for member pointer constants and conversion.
llvm-svn: 111772
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
reinterpret_casts (possibly indirectly via C-style/functional casts)
on values, e.g.,
int i;
reinterpret_cast<short&>(i);
The IR generated for this is essentially the same as for
*reinterpret_cast<short*>(&i).
Fixes PR6437, PR7593, and PR7344.
llvm-svn: 108294
was not producing a memcpy with the right address
spaces because of two places in it doing casts of
the arguments to i8, one of which that didn't
preserve the address space.
There is also an optimizer bug here.
llvm-svn: 107842
self-host. Hopefully these results hold up on different platforms.
I tried to keep the GNU ObjC runtime happy, but it's hard for me to test.
Reimplement how clang generates IR for exceptions. Instead of creating new
invoke destinations which sequentially chain to the previous destination,
push a more semantic representation of *why* we need the cleanup/catch/filter
behavior, then collect that information into a single landing pad upon request.
Also reorganizes how normal cleanups (i.e. cleanups triggered by non-exceptional
control flow) are generated, since it's actually fairly closely tied in with
the former. Remove the need to track which cleanup scope a block is associated
with.
Document a lot of previously poorly-understood (by me, at least) behavior.
The new framework implements the Horrible Hack (tm), which requires every
landing pad to have a catch-all so that inlining will work. Clang no longer
requires the Horrible Hack just to make exceptions flow correctly within
a function, however. The HH is an unfortunate requirement of LLVM's EH IR.
llvm-svn: 107631
have CGF create and make accessible standard int32,int64 and
intptr types. This fixes a ton of 80 column violations
introduced by LLVMContextification and cleans up stuff a lot.
llvm-svn: 106977
objective-c++ class objects which have GC'able objc object
pointers and need to use ObjC's objc_memmove_collectable
API (radar 8070772).
llvm-svn: 106061
isn't possible to compute.
This patch is mostly refactoring; the key change is the addition of the code
starting with the comment, "Check whether the function has a computable LLVM
signature." The solution here is essentially the same as the way the
vtable code handles such functions.
llvm-svn: 105151
temporaries. There are actually several interrelated fixes here:
- When converting an object to a base class, it's only an lvalue
cast when the original object was an lvalue and we aren't casting
pointer-to-derived to pointer-to-base. Previously, we were
misclassifying derived-to-base casts of class rvalues as lvalues,
causing various oddities (including problems with reference binding
not extending the lifetimes of some temporaries).
- Teach the code for emitting a reference binding how to look
through no-op casts and parentheses directly, since
Expr::IgnoreParenNoOpCasts is just plain wrong for this. Also, make
sure that we properly look through multiple levels of indirection
from the temporary object, but destroy the actual temporary object;
this fixes the reference-binding issue mentioned above.
- Teach Objective-C message sends to bind the result as a temporary
when needed. This is actually John's change, but it triggered the
reference-binding problem above, so it's included here. Now John
can actually test his return-slot improvements.
llvm-svn: 104434
particular issue was the cause of the Boost.Interprocess failures, and
in general will lead to horrendous, hard-to-diagnose miscompiles. The
assertion itself has survives self-host and a full Boost build, so we
are close to eradicating this problem in C++.
Note that the assertion is *not* turned on for Objective-C++, where we
still have problems with introducing memcpy's of non-POD class
types. That part of the assertion will go away as soon as we fix the
known issues in Objective-C++.
llvm-svn: 104227