COFF/PE, so the relocation model is never static. Loosen the assertion
accordingly. The relocation can still be emitted properly, as it will be
converted to an IMAGE_REL_ARM_ADDR32 which will be resolved by the loader
taking the base relocation into account. This is necessary to permit the
emission of long calls which can be controlled via the -mlong-calls option in
the driver.
llvm-svn: 210399
Add a brief explanation of the data section layout for the unwind data that the
Windows on ARM EH models. This is simply to provide a rough idea of the layout
of the code involved in the decoding of the unwinding. Details on the involved
data structures are available in the associated support header. The bulk of it
is related to printing out the byte-code to help validate generation of WoA EH.
No functional change.
llvm-svn: 210397
Patch by Gabriel Radanne.
While this commit technically breaks API, no code should have supplied
the integer IDs directly, and thus no code should break.
llvm-svn: 210395
The messages were
"PR19753: Optimize comparisons with "ashr exact" of a constanst."
"Added support to optimize comparisons with "lshr exact" of a constant."
They were not correctly handling signed/unsigned operation differences,
causing pr19958.
llvm-svn: 210393
Now the scheduler updates a node's ready time as soon as it is
scheduled, before releasing dependent nodes. There was a reason I
didn't do this initially but it no longer applies.
A53 is in-order and was running into an issue where nodes where added
to the readyQ too early. That's now fixed.
This also makes it easier for custom scheduling strategies to build
heuristics based on the actual cycles that the node was scheduled at.
The only impact on OOO (sandybridge/cyclone) is that ready times will
be slightly more accurate. I didn't measure any significant regressions.
llvm-svn: 210390
Add an isWindowsItaniumEnvironment function to Triple to mirror the other
Windows environments. This is simply a utility function to check if we are
targeting windows-itanium rather than windows-msvc.
llvm-svn: 210383
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
llvm-svn: 210379
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
llvm-svn: 210375
Prevent the early elimination of sections in the object writer. There may be
references to the section itself by other symbols, which may potentially not be
possible to resolve. ML (Visual Studio's Macro Assembler) also seems to retain
empty sections.
The elimination of symbols and sections which are unused should really occur at
the link phase. This will not cause any change in the resulting binary, simply
in the generated object files.
The adjustments to the other unit tests account for the fluctuating section
index caused by the appearance of sections which were previously discarded.
llvm-svn: 210373
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
llvm-svn: 210367
These checks were accidentally skipping the 0x prefix in the hex
offsets, then cunningly ignoring the prefix in the use of those captured
values.
Except in the case of the unit length, where the match was only matching
the leading '0' before the x in the 0x prefix, then matching that
against the length. We can't actually express the length association
here, as the length field in the Compile Unit header does not include
the length field itself, but the length field in the pubnames section
/does/ include the size of the length field in the Compile Unit header -
so the two numbers are actually 4 bytes different. Just skip matching
that.
llvm-svn: 210364
This was added to test that DW_AT_GNU_pubnames used sec_offset in DWARF4
and data4 in DWARF3 and below. Since then we've updated
DW_AT_GNU_pubnames to be a flag, rather than a section offset anyway.
Granted this still differs between DWARF 3 and DWARF 4
(FORM_flag_present versun FORM_flag) but it doesn't seem worthwhile
testing that codepath again here. It's covered adequately in many other
test cases.
And while I'm here, don't hardcode the byte size of the compile unit -
it's not relevant to this test and just makes it brittle if/when
anything changes in the way this CU is emitted.
llvm-svn: 210362
Summary:
We were being too strict and not accounting for undefs.
Added a test case and fixed another one where we improved codegen.
Reviewers: grosbach, nadav, delena
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4039
llvm-svn: 210361
This patch fixes a couple of lowering issues for little endian
PowerPC. The code for lowering BUILD_VECTOR contains a number of
optimizations that are only valid for big endian. For now, we disable
those optimizations for correctness. In the future, we will add
analogous optimizations that are correct for little endian.
When lowering a SHUFFLE_VECTOR to a VPERM operation, we again need to
make the now-familiar transformation of swapping the input operands
and complementing the permute control vector. Correctness of this
transformation is tested by the accompanying test case.
llvm-svn: 210336
r210177 added lld Makefiles, r210245 added automatic build when the source is present.
This revision completes the set by adding the lld test and unittests to the check-all target.
llvm-svn: 210318
The option check was being performed after config.h/llvm-config.h substitution,
generating incorrect macro definitions.
Fixes PR19614.
llvm-svn: 210311
If we have common uses on separate paths in the tree; process the one with greater common depth first.
This makes sure that we do not assume we need to extract a load when it is actually going to be part of a vectorized tree.
Review: http://reviews.llvm.org/D3800
llvm-svn: 210310
clang's own CMake setup handles this as of r210308.
The CMAKE_CROSSCOMPILING special-case will no longer be hard-coded. This was
clearly site-specific to someone's local configuration and should be passed in
at configure time if needed with e.g. -DLIBXML2_LIBRARIES=... (the libxml2
target I tried here doesn't even support liblzma so it's *way* off).
llvm-svn: 210309
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
We extended the .section syntax to allow multiple sections with the
same name but different comdats, but currently we don't make sure that
the output section has that comdat symbol.
That happens to work with the code llc produces currently because it looks like
.section secName, "dr", one_only, "COMDATSym"
.globl COMDATSym
COMDATSym:
....
but that is not very friendly to anyone coding in assembly or even to
llc once we get comdat support in the IR.
This patch changes the coff object writer to make sure the comdat symbol is
output just after the section symbol, as required by the coff spec.
llvm-svn: 210298
Chandler correctly pointed out that I need an LLVM IR test for
r210282, which modified the vperm -> shuffle transform for little
endian PowerPC. This patch provides that test.
llvm-svn: 210297
Most issues are on mishandling s/zext.
Fixes:
1. When rebuilding new indices, s/zext should be distributed to
sub-expressions. e.g., sext(a +nsw (b +nsw 5)) = sext(a) + sext(b) + 5 but not
sext(a + b) + 5. This also affects the logic of recursively looking for a
constant offset, we need to include s/zext into the context of the searching.
2. Function find should return the bitwidth of the constant offset instead of
always sign-extending it to i64.
3. Stop shortcutting zext'ed GEP indices. LLVM conceptually sign-extends GEP
indices to pointer-size before computing the address. Therefore, gep base,
zext(a + b) != gep base, a + b
Improvements:
1. Add an optimization for splitting sext(a + b): if a + b is proven
non-negative (e.g., used as an index of an inbound GEP) and one of a, b is
non-negative, sext(a + b) = sext(a) + sext(b)
2. Function Distributable checks whether both sext and zext can be distributed
to operands of a binary operator. This helps us split zext(sext(a + b)) to
zext(sext(a) + zext(sext(b)) when a + b does not signed or unsigned overflow.
Refactoring:
Merge some common logic of handling add/sub/or in find.
Testing:
Add many tests in split-gep.ll and split-gep-and-gvn.ll to verify the changes
we made.
llvm-svn: 210291
This is a first step in seeing if it is possible to make llvm-nm produce
the same output as darwin's nm(1). Darwin's default format is bsd but its
-m output prints the longer Mach-O specific details. For now I added the
"-format darwin" to do this (whos name may need to change in the future).
As there are other Mach-O specific flags to nm(1) which I'm hoping to add some
how in the future. But I wanted to see if I could get the correct output for
-m flag using llvm-nm and the libObject interfaces.
I got this working but would love to hear what others think about this approach
to getting object/format specific details printed with llvm-nm.
llvm-svn: 210285
As discussed in cfe commit r210279, the correct little-endian
semantics for the vec_perm Altivec interfaces are implemented by
reversing the order of the input vectors and complementing the permute
control vector. This converts the desired permute from little endian
element order into the big endian element order that the underlying
PowerPC vperm instruction uses. This is represented with a
ppc_altivec_vperm intrinsic function.
The instruction combining pass contains code to convert a
ppc_altivec_vperm intrinsic into a vector shuffle operation when the
intrinsic has a permute control vector (mask) that is a constant.
However, the vector shuffle operation assumes that vector elements are
in natural order for their endianness, so for little endian code we
will get the wrong result with the existing transformation.
This patch reverses the semantic change to vec_perm that was performed
in altivec.h by once again swapping the input operands and
complementing the permute control vector, returning the element
ordering to little endian.
The correctness of this code is tested by the new perm.c test added in
a previous patch, and by other tests in the test suite that fail
without this patch.
llvm-svn: 210282
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280