Cast instruction do not have side effects and can consequently be part of a
scop. We special cased them earlier, as they may be problematic within array
subscripts or loop bounds. However, the scalar evolution validator already
checks for them such that there is no need to also check the instructions within
the basic blocks. Checking them is actually overly conservative as the precence
of casts may invalidate a scop, even though scalar evolution is not influenced
by it.
llvm-svn: 160261
I did not take into account, that this patch fails to compile without the
llvm.codegen patch applied. This breaks buildbots.
I revert this until we found a solution to commit this without buildbots
complaining.
This reverts commit cb43ab80e94434e780a66be3b9a6ad466822fe33.
llvm-svn: 160165
Translate the selected parallel loop body into a ptx string and run it
with cuda driver API. We limit this preliminary implementation to
target the following special test cases:
- Support only 2-dimensional parallel loops with or without only one
innermost non-parallel loop.
- Support write memory access to only one array in a SCoP.
Contributed by: Yabin Hu <yabin.hwu@gmail.com>
llvm-svn: 160164
CLooG and the CLooG based code generation does not yet correctly derive the
types of the expressions, but just uses i64 for everything. This is incorrect,
but works normally pretty well. However, the recent change of adding parameter
bounds to the context made CLooG generate expressions that contain a lot of very
large integers that possibly don't fit into an i64. This broke the code
generation for several benchmarks.
To get the CLooG based code generation working again, we just don't take into
account any constraints in the context. This brings us back to the theoretical
incorrect, but in practice generally correct code.
The next step will be the isl based code generation. Here we will derive
automatically correct types.
llvm-svn: 158015
The "llvm.codegen" intrinsic patch is a patch to LLVM, which is used
to generate code for embedded LLVM-IR strings. In Polly, we use it
to generate ptx assembly text for GPGPU code generation.
llvm-svn: 157689
Store a pointer to each ScopStmt in the isl_id associated with the space of its
domain. This will later allow us to recover the statement during code
generation with isl.
llvm-svn: 157607
Derive the maximal and minimal values of a parameter from the type it has. Add
this information to the scop context. This information is needed, to derive
optimal types during code generation.
llvm-svn: 157245
There is no need for special code to handle SCEVUnknowns. SCEVUnkowns are always
parameters and will be handled by the generic parameter handling code in
visit().
llvm-svn: 157243
This is an incomplete implementation of the SCEV based code generation.
When finished it will remove the need for -indvars -enable-iv-rewrite.
For the moment it is still disabled. Even though it passes 'make polly-test',
there are still loose ends especially in respect of OpenMP code generation.
llvm-svn: 155717