D93491 implemented `--version` for the MachO LLD port, but asserts that the string contains something like "LLD N.N". However, this is just the cmake default for `LLD_VERSION_STRING`, and downstream users may choose a different value, e.g. a rolling distro may print "LLD trunk".
Every basic block section symbol created by -fbasic-block-sections will contain
".__part." to know that this symbol corresponds to a basic block fragment of
the function.
This patch solves two problems:
a) Like D89617, we want function symbols with suffixes to be properly qualified
so that external tools like profile aggregators know exactly what this
symbol corresponds to.
b) The current basic block naming just adds a ".N" to the symbol name where N is
some integer. This collides with how clang creates __cxx_global_var_init.N.
clang creates these symbol names to call constructor functions and basic
block symbol naming should not use the same style.
Fixed all the test cases and added an extra test for __cxx_global_var_init
breakage.
Differential Revision: https://reviews.llvm.org/D93082
We didn't have support for parsing DriverKit in our `-platform`
flag, so add that too. Also remove a bunch of unnecessary namespace
prefixes.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93741
It's an extension to ld64, but all the other ports have it, and
someone asked for it in PR43721.
While here, change the COFF help text to match the other ports.
Differential Revision: https://reviews.llvm.org/D93491
Before this, a hello world program would contain many many unnecessary
entries in its string table.
No behavior change, just makes the string table in the output smaller
and more like ld64's.
Differential Revision: https://reviews.llvm.org/D93711
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
* Migrate most of our tests to use `split-file` instead of `echo`
* Remove individual `rm -f %t/libfoo.a` commands in favor of a top-level `rm -rf %t`
* Remove unused `Inputs/libfunction.s`
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D93604
For x86-64, D33100 added a diagnostic for local-exec TLS relocations referencing a preemptible symbol.
This patch generalizes it to non-preemptible symbols (see `-Bsymbolic` in `tls.s`)
on all targets.
Local-exec TLS relocations resolve to offsets relative to a fixed point within
the static TLS block, which are only meaningful for the executable.
With this change, `clang -fpic -shared -fuse-ld=bfd a.c` on the following example will be flagged for AArch64/ARM/i386/x86-64/RISC-V
```
static __attribute__((tls_model("local-exec"))) __thread long TlsVar = 42;
long bump() { return ++TlsVar; }
```
Note, in GNU ld, at least arm, riscv and x86's ports have the similar
diagnostics, but aarch64 and ppc64 do not error.
Differential Revision: https://reviews.llvm.org/D93331
Alternative to D91611.
The TLS General Dynamic/Local Dynamic code sequences need to mark
`__tls_get_addr` with R_PPC64_TLSGD or R_PPC64_TLSLD, e.g.
```
addis r3, r2, x@got@tlsgd@ha # R_PPC64_GOT_TLSGD16_HA
addi r3, r3, x@got@tlsgd@l # R_PPC64_GOT_TLSGD16_LO
bl __tls_get_addr(x@tlsgd) # R_PPC64_TLSGD followed by R_PPC64_REL24
nop
```
However, there are two deviations form the above:
1. direct call to `__tls_get_addr`. This is essential to implement ld.so in glibc/musl/FreeBSD.
```
bl __tls_get_addr
nop
```
This is only used in a -shared link, and thus not subject to the GD/LD to IE/LE
relaxation issue below.
2. Missing R_PPC64_TLSGD/R_PPC64_TLSGD for compiler generated TLS references
According to Stefan Pintille, "In the early days of the transition from the
ELFv1 ABI that is used for big endian PowerPC Linux distributions to the ELFv2
ABI that is used for little endian PowerPC Linux distributions, there was some
ambiguity in the specification of the relocations for TLS. The GNU linker has
implemented support for correct handling of calls to __tls_get_addr with a
missing relocation. Unfortunately, we didn't notice that the IBM XL compiler
did not handle TLS according to the updated ABI until we tried linking XL
compiled libraries with LLD."
In short, LLD needs to work around the old IBM XL compiler issue.
Otherwise, if the object file is linked in -no-pie or -pie mode,
the result will be incorrect because the 4 instructions are partially
rewritten (the latter 2 are not changed).
Work around the compiler bug by disable General Dynamic/Local Dynamic to
Initial Exec/Local Exec relaxation. Note, we also disable Initial Exec
to Local Exec relaxation for implementation simplicity, though technically it can be kept.
ppc64-tls-missing-gdld.s demonstrates the updated behavior.
Reviewed By: #powerpc, stefanp, grimar
Differential Revision: https://reviews.llvm.org/D92959
Also remove iteration over ArchiveFile symbols in buildInputSectionPriorities --
that was rendered unnecessary after D92539, which included ObjFiles from
ArchiveFiles inside the `inputFiles` vector.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93569
Obj-C symbols may have spaces and colons, which our previous order file
parser would be confused by. The order file format has made the very unfortunate
choice of using colons for its delimiters, which means that we have to use
heuristics to determine if a given colon is part of a symbol or not...
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93567
The common encodings table holds only 127 entries. The encodings index for compact entries is 8 bits wide, and indexes 127..255 are stored locally to each second-level page. Prior to this diff, lld would `fatal()` if encodings overflowed the 127 limit.
This diff populates a per-second-level-page encodings table as needed. When the per-page encodings table hits its limit, we must terminate the page. If such early termination would consume fewer entries than a regular (non-compact) encoding page, then we prefer the regular format.
Caveat: one reason the common-encoding table might overflow is because of DWARF debug-info references, which are not yet implemented and will come with a later diff.
Differential Revision: https://reviews.llvm.org/D93267
We need to make sure not to emit R_X86_64_GOTPCRELX relocations for
instructions that use a REX prefix. If a REX prefix is present, we need to
instead use a R_X86_64_REX_GOTPCRELX relocation. The existing logic for
CALL64m, JMP64m, etc. already handles this by checking the HasREX parameter
and using it to determine which relocation type to use. Do this for all
instructions that can use relaxed relocations.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93561
The scope of R_TLS (TP offset relocation types (TPREL/TPOFF) used for the
local-exec TLS model) is actually narrower than its name may imply. R_TLS_NEG
is only used by Solaris R_386_TLS_LE_32.
Rename them so that they will be less confusing.
Reviewed By: grimar, psmith, rprichard
Differential Revision: https://reviews.llvm.org/D93467
Currently, `ELFFile<ELFT>::getEntry` does not check an index of
an entry. Because of that the code might read past the end of the symbol
table silently. I've added a test to `llvm-readobj\ELF\relocations.test`
to demonstrate the possible issue. Also, I've added a unit test for
this method.
After this change, `getEntry` stops reporting the section index and
reuses the `getSectionContentsAsArray` method, which already has
all the validation needed. Our related warnings now provide
more and better context sometimes.
Differential revision: https://reviews.llvm.org/D93209
Libraries linked to the lld elf library exposes a function named main.
When debugging code linked to such libraries and intending to set a
breakpoint at main, the debugger also sets breakpoint at the main
function at lld elf driver. The possible choice was to rename it to
link but that would again clash with lld::*::link. This patch tries
to consistently rename them to linkerMain.
Differential Revision: https://reviews.llvm.org/D91418
This is a refactor to pave the way for supporting paired-ADDEND for ARM64. The only paired reloc type for X86_64 is SUBTRACTOR. In a later diff, I will add SUBTRACTOR for both X86_64 and ARM64.
* s/`getImplicitAddend`/`getAddend`/ because it handles all forms of addend: implicit, explicit, paired.
* add predicate `bool isPairedReloc()`
* check range of `relInfo.r_symbolnum` is internal, unrelated to user-input, so use `assert()`, not `error()`
* minor cleanups & rearrangements in `InputFile::parseRelocations()`
Differential Revision: https://reviews.llvm.org/D90614
TREATMENT can be `error`, `warning`, `suppress`, or `dynamic_lookup`
The `dymanic_lookup` remains unimplemented for now.
Differential Revision: https://reviews.llvm.org/D93263
Live symbols should only cause the files in which they are defined
to become live.
For now this is only tested in emscripten: we're continuing
to work on reducing the test case further for an lld-style
unit test.
Differential Revision: https://reviews.llvm.org/D93472
Fixes issue where if a line section doesn't start with a line number
then the addresses at the beginning of the section don't have line numbers.
For example, for a line section like this
```
0001:00000010-00000014, line/column/addr entries = 1
7 00000013 !
```
a line number wouldn't be found for addresses from 10 to 12.
This matches behavior when using the DIA SDK.
Differential Revision: https://reviews.llvm.org/D93306
As indicated by AArch64 ELF specification, symbols with st_other
marked with STO_AARCH64_VARIANT_PCS indicates it may follow a variant
procedure call standard with different register usage convention
(for instance SVE calls).
Static linkers must preserve the marking and propagate it to the dynamic
symbol table if any reference or definition of the symbol is marked with
STO_AARCH64_VARIANT_PCS, and add a DT_AARCH64_VARIANT_PCS dynamic tag if
there are R_<CLS>_JUMP_SLOT relocations that reference that symbols.
It implements https://bugs.llvm.org/show_bug.cgi?id=48368.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93045
Note that dylibs without *any* refs will still be loaded in the usual
(strong) fashion.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93435
Weak references need not necessarily be satisfied at runtime (but they must
still be satisfied at link time). So symbol resolution still works as per usual,
but we now pass around a flag -- ultimately emitting it in the bind table -- to
indicate if a given dylib symbol is a weak reference.
ld64's behavior for symbols that have both weak and strong references is
a bit bizarre. For non-function symbols, it will emit a weak import. For
function symbols (those referenced by BRANCH relocs), it will emit a
regular import. I'm not sure what value there is in that behavior, and
since emulating it will make our implementation more complex, I've
decided to treat regular weakrefs like function symbol ones for now.
Fixes PR48511.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93369
Similar to D77853. Change ADRP to print the target address in hex, instead of the raw immediate.
The behavior is similar to GNU objdump but we also include `0x`.
Note: GNU objdump is not consistent whether or not to emit `0x` for different architectures. We try emitting 0x consistently for all targets.
```
GNU objdump: adrp x16, 10000000
Old llvm-objdump: adrp x16, #0
New llvm-objdump: adrp x16, 0x10000000
```
`adrp Xd, 0x...` assembles to a relocation referencing `*ABS*+0x10000` which is not intended. We need to use a linker or use yaml2obj.
The main test is `test/tools/llvm-objdump/ELF/AArch64/pcrel-address.yaml`
Differential Revision: https://reviews.llvm.org/D93241
Fix PR48357: If .rela.dyn appears as an output section description, its type may
be SHT_RELA (due to the empty synthetic .rela.plt) while there is no input
section. The empty .rela.dyn may be retained due to a reference in a linker
script. Don't crash.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D93367
From what I can tell, it's essentially identical to
`-sub_library`, but it doesn't match files ending in ".dylib".
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93276
Their addresses are already encoded as section-relative offsets, so
there's no need to rebase them at runtime. {D85080} has some context
on the weirdness of TLV sections.
Fixes llvm.org/PR48491.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93257
We were not setting forceWeakImport for file paths given by
`-weak_library` if we had already loaded the file. This diff fixes that
by having `loadDylib` return a cached DylibFile instance even if we have
already loaded that file.
We still avoid emitting multiple LC_LOAD_DYLIBs, but we achieve this by
making inputFiles a SetVector instead of relying on the `loadedDylibs`
cache.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93255
Follow the naming set by TI's own GCC-based toolchain.
Also, force the `osabi` field to `ELFOSABI_STANDALONE`, this matches GNU LD's output (the patching is done in `elf32_msp430_post_process_headers`).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D92931
The original tests have unneeded symbols and copy-relocation-zero-abs-addr.s
does not actually test anything.
Rewrite them and add copy-relocation-zero-addr.s instead.
Add --soname=b so that the address 0x203400 will be stable. (When linking an
executable with %t.so, the path %t.so will be recorded in the DT_NEEDED entry if
%t.so doesn't have DT_SONAME. .dynstr will have varying lengths on different
systems.)
This test may fail if there is a new changes to this tests.
The archives are not deleted so the contents from the previous test run
may affect the contents for the current run,
so this will require cleaning up the Output dir or force build of buildbot.
The fix is to put all the objects in the temporary dir that we cleanup every run,
to avoid run-2-run flaky failures.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93128
lto-object-path.ll, like stabs.s, is disabled on Windows as the path
separators make it difficult to write a test that works across
platforms.
This diff also disables implicit-dylibs.s on Windows as we seem to emit
LC_LOAD_DYLIBs in a different order on that platform. This seems like a
bug in LLD that needs to be addressed (in a future diff).
Allow exclusion/discarding of custom sections with COMDAT groups.
It piggybacks on the existing COMDAT-handling code, but applies to custom sections as well.
Differential Revision: https://reviews.llvm.org/D92950