Commit Graph

40 Commits

Author SHA1 Message Date
Lang Hames 0f5b70769d [llvm-jitlink] Add -phony-externals option to suppress unresolved externals.
The -phony-externals option adds a generator which explicitly defines any
otherwise unresolved externals as null. This transforms link-time
unresolved-symbol errors into potential runtime null pointer accesses
(if an unresolved external is actually accessed during execution).

This option can be useful in -harness mode to avoid having to mock a
large number of symbols that are not reachable at runtime (e.g. unused
methods referenced by a class vtable).
2020-08-01 18:33:44 -07:00
Lang Hames e12a028ed3 [llvm-jitlink] Support promotion of ODR weak symbols in -harness mode.
This prevents weak symbols from being immediately dead-stripped when not
directly referenced from the test harneess, enabling use of weak symbols
from the code under test.
2020-08-01 18:33:44 -07:00
Lang Hames 8ce8cee1e1 [llvm-jitlink] Add -harness option to llvm-jitlink.
The -harness option enables new testing use-cases for llvm-jitlink. It takes a
list of objects to treat as a test harness for any regular objects passed to
llvm-jitlink.

If any files are passed using the -harness option then the following
transformations are applied to all other files:

  (1) Symbols definitions that are referenced by the harness files are promoted
      to default scope. (This enables access to statics from test harness).

  (2) Symbols definitions that clash with definitions in the harness files are
      deleted. (This enables interposition by test harness).

  (3) All other definitions in regular files are demoted to local scope.
      (This causes untested code to be dead stripped, reducing memory cost and
      eliminating spurious unresolved symbol errors from untested code).

These transformations allow the harness files to reference and interpose
symbols in the regular object files, which can be used to support execution
tests (including fuzz tests) of functions in relocatable objects produced by a
build.
2020-07-30 15:26:19 -07:00
Lang Hames 3b55bfad2a [llvm-jitlink] Add suppport for testing GOT entries and stubs for ELF.
This enables regression testing of GOT and stub handling with
llvm-jitlink.
2020-07-17 17:55:30 -07:00
Logan Smith 3ee7fe4cfd [llvm][NFC] Add missing 'override's 2020-07-17 17:35:59 -07:00
Lang Hames a6deaeec37 [JITLink] Improve llvm-jitlink regression testing support for ELF.
This patch adds a jitlink pass, 'registerELFGraphInfo', that records section
and symbol information about each LinkGraph in the llvm-jitlink session object.
This allows symbols and sections to be referred to by name in llvm-jitlink
regression tests. This will enable a testcase to be written for
https://reviews.llvm.org/D80613.
2020-05-28 20:31:50 -07:00
Lang Hames 9eafcbfca1 [JITLink] Fix 80-column rule violation. 2020-05-28 20:31:50 -07:00
Lang Hames c66f89005f [ORC] Rename SearchOrder operations on JITDylib to LinkOrder.
Refering to the link order of a dylib better matches the terminology used in
static compilation. As upcoming patches will increase the number of places where
link order matters (for example when closing JITDylibs) it's better to get this
name change out of the way early.
2020-05-04 16:47:52 -07:00
Lang Hames f75e04bc93 [llvm-jitlink] Add -show-init-es option to dump initial ExecutionSession state.
Inspecting this state can be helpful when debugging jit-linking testcases.
2020-03-14 16:07:46 -07:00
Lang Hames 0caed13fe4 [llvm-jitlink] Fix DEBUG_TYPE string.
This updates the DEBUG_TYPE string in llvm-jitlink-macho.cpp to reflect the
change made to llvm-jitlink.cpp in 66128c4840.
2020-03-11 20:04:54 -07:00
Lang Hames 14ac84e5c5 [JITLink] Add a -slab-address option to llvm-jitlink.
This option can be used to for JITLink to link as-if the target memory slab were
allocated at a specific start address. This can be used to both verify that
cross-address space linking is working correctly, and to ensure that certain
address-sensitive optimizations (e.g. GOT and stub elimination) either do or do
not fire, depending on the requirements of the test case.

This argument is only valid for testing in conjunction with -noexec -slab-alloc,
and will produce an error if used without those arguments.
2020-03-03 14:25:51 -08:00
Lang Hames 66128c4840 [JITLink] Update DEBUG_TYPE string for llvm-jitlink.
Apparently LLVM_DEBUG doesn't like dashes in strings.
2020-03-01 09:38:06 -08:00
Lang Hames 85fb997659 [ORC] Add generic initializer/deinitializer support.
Initializers and deinitializers are used to implement C++ static constructors
and destructors, runtime registration for some languages (e.g. with the
Objective-C runtime for Objective-C/C++ code) and other tasks that would
typically be performed when a shared-object/dylib is loaded or unloaded by a
statically compiled program.

MCJIT and ORC have historically provided limited support for discovering and
running initializers/deinitializers by scanning the llvm.global_ctors and
llvm.global_dtors variables and recording the functions to be run. This approach
suffers from several drawbacks: (1) It only works for IR inputs, not for object
files (including cached JIT'd objects). (2) It only works for initializers
described by llvm.global_ctors and llvm.global_dtors, however not all
initializers are described in this way (Objective-C, for example, describes
initializers via specially named metadata sections). (3) To make the
initializer/deinitializer functions described by llvm.global_ctors and
llvm.global_dtors searchable they must be promoted to extern linkage, polluting
the JIT symbol table (extra care must be taken to ensure this promotion does
not result in symbol name clashes).

This patch introduces several interdependent changes to ORCv2 to support the
construction of new initialization schemes, and includes an implementation of a
backwards-compatible llvm.global_ctor/llvm.global_dtor scanning scheme, and a
MachO specific scheme that handles Objective-C runtime registration (if the
Objective-C runtime is available) enabling execution of LLVM IR compiled from
Objective-C and Swift.

The major changes included in this patch are:

(1) The MaterializationUnit and MaterializationResponsibility classes are
extended to describe an optional "initializer" symbol for the module (see the
getInitializerSymbol method on each class). The presence or absence of this
symbol indicates whether the module contains any initializers or
deinitializers. The initializer symbol otherwise behaves like any other:
searching for it triggers materialization.

(2) A new Platform interface is introduced in llvm/ExecutionEngine/Orc/Core.h
which provides the following callback interface:

  - Error setupJITDylib(JITDylib &JD): Can be used to install standard symbols
    in JITDylibs upon creation. E.g. __dso_handle.

  - Error notifyAdding(JITDylib &JD, const MaterializationUnit &MU): Generally
    used to record initializer symbols.

  - Error notifyRemoving(JITDylib &JD, VModuleKey K): Used to notify a platform
    that a module is being removed.

  Platform implementations can use these callbacks to track outstanding
initializers and implement a platform-specific approach for executing them. For
example, the MachOPlatform installs a plugin in the JIT linker to scan for both
__mod_inits sections (for C++ static constructors) and ObjC metadata sections.
If discovered, these are processed in the usual platform order: Objective-C
registration is carried out first, then static initializers are executed,
ensuring that calls to Objective-C from static initializers will be safe.

This patch updates LLJIT to use the new scheme for initialization. Two
LLJIT::PlatformSupport classes are implemented: A GenericIR platform and a MachO
platform. The GenericIR platform implements a modified version of the previous
llvm.global-ctor scraping scheme to provide support for Windows and
Linux. LLJIT's MachO platform uses the MachOPlatform class to provide MachO
specific initialization as described above.

Reviewers: sgraenitz, dblaikie

Subscribers: mgorny, hiraditya, mgrang, ributzka, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74300
2020-02-19 13:59:32 -08:00
Bill Wendling c55cf4afa9 Revert "Remove redundant "std::move"s in return statements"
The build failed with

  error: call to deleted constructor of 'llvm::Error'

errors.

This reverts commit 1c2241a793.
2020-02-10 07:07:40 -08:00
Bill Wendling 1c2241a793 Remove redundant "std::move"s in return statements 2020-02-10 06:39:44 -08:00
Lang Hames c0143f37da [ORC] Make ObjectLinkingLayer own its jitlink::MemoryManager.
This relieves ObjectLinkingLayer clients of the responsibility of holding the
memory manager. This makes it easier to select between RTDyldObjectLinkingLayer
(which already owned its memory manager factory) and ObjectLinkingLayer at
runtime as clients aren't required to hold a jitlink::MemoryManager field just
in case ObjectLinkingLayer is selected.
2019-12-15 17:35:52 -08:00
Lang Hames 8c4f048a00 [JITLink] Remove the Section::symbols_empty() method.
llvm::empty(Sec.symbols()) can be used instead.
2019-12-05 20:19:17 -08:00
Lang Hames 4fc68b9b7f [ORC] Remove the automagic Main JITDylib fram ExecutionSession.
This patch removes the magic "main" JITDylib from ExecutionEngine. The main
JITDylib was created automatically at ExecutionSession construction time, and
all subsequently created JITDylibs were added to the main JITDylib's
links-against list by default. This saves a couple of lines of boilerplate for
simple JIT setups, but this isn't worth introducing magical behavior for.

ORCv2 clients should now construct their own main JITDylib using
ExecutionSession::createJITDylib and set up its linkages manually using
JITDylib::setSearchOrder (or related methods in JITDylib).
2019-12-05 01:36:49 -08:00
Lang Hames ece8fed609 [ORC] Add a runAsMain utility function to ExecutionUtils.
The runAsMain function takes a pointer to a function with a standard C main
signature, int(*)(int, char*[]), and invokes it using the given arguments and
program name. The arguments are copied into writable temporary storage as
required by the C and C++ specifications, so runAsMain safe to use when calling
main functions that modify their arguments in-place.

This patch also uses the new runAsMain function to replace hand-rolled versions
in lli, llvm-jitlink, and the SpeculativeJIT example.
2019-12-02 01:52:52 -08:00
Lang Hames 674df13b5f [ORC][JITLink] Add support for weak references, and improve handling of static
libraries.

This patch substantially updates ORCv2's lookup API in order to support weak
references, and to better support static archives. Key changes:

-- Each symbol being looked for is now associated with a SymbolLookupFlags
   value. If the associated value is SymbolLookupFlags::RequiredSymbol then
   the symbol must be defined in one of the JITDylibs being searched (or be
   able to be generated in one of these JITDylibs via an attached definition
   generator) or the lookup will fail with an error. If the associated value is
   SymbolLookupFlags::WeaklyReferencedSymbol then the symbol is permitted to be
   undefined, in which case it will simply not appear in the resulting
   SymbolMap if the rest of the lookup succeeds.

   Since lookup now requires these flags for each symbol, the lookup method now
   takes an instance of a new SymbolLookupSet type rather than a SymbolNameSet.
   SymbolLookupSet is a vector-backed set of (name, flags) pairs. Clients are
   responsible for ensuring that the set property (i.e. unique elements) holds,
   though this is usually simple and SymbolLookupSet provides convenience
   methods to support this.

-- Lookups now have an associated LookupKind value, which is either
   LookupKind::Static or LookupKind::DLSym. Definition generators can inspect
   the lookup kind when determining whether or not to generate new definitions.
   The StaticLibraryDefinitionGenerator is updated to only pull in new objects
   from the archive if the lookup kind is Static. This allows lookup to be
   re-used to emulate dlsym for JIT'd symbols without pulling in new objects
   from archives (which would not happen in a normal dlsym call).

-- JITLink is updated to allow externals to be assigned weak linkage, and
   weak externals now use the SymbolLookupFlags::WeaklyReferencedSymbol value
   for lookups. Unresolved weak references will be assigned the default value of
   zero.

Since this patch was modifying the lookup API anyway, it alo replaces all of the
"MatchNonExported" boolean arguments with a "JITDylibLookupFlags" enum for
readability. If a JITDylib's associated value is
JITDylibLookupFlags::MatchExportedSymbolsOnly then the lookup will only
match against exported (non-hidden) symbols in that JITDylib. If a JITDylib's
associated value is JITDylibLookupFlags::MatchAllSymbols then the lookup will
match against any symbol defined in the JITDylib.
2019-11-28 13:30:49 -08:00
Mirko Brkusanin 4b63ca1379 [Mips] Use appropriate private label prefix based on Mips ABI
MipsMCAsmInfo was using '$' prefix for Mips32 and '.L' for Mips64
regardless of -target-abi option. By passing MCTargetOptions to MCAsmInfo
we can find out Mips ABI and pick appropriate prefix.

Tags: #llvm, #clang, #lldb

Differential Revision: https://reviews.llvm.org/D66795
2019-10-23 12:24:35 +02:00
Lang Hames 4e920e58e6 [JITLink] Switch from an atom-based model to a "blocks and symbols" model.
In the Atom model the symbols, content and relocations of a relocatable object
file are represented as a graph of atoms, where each Atom represents a
contiguous block of content with a single name (or no name at all if the
content is anonymous), and where edges between Atoms represent relocations.
If more than one symbol is associated with a contiguous block of content then
the content is broken into multiple atoms and layout constraints (represented by
edges) are introduced to ensure that the content remains effectively contiguous.
These layout constraints must be kept in mind when examining the content
associated with a symbol (it may be spread over multiple atoms) or when applying
certain relocation types (e.g. MachO subtractors).

This patch replaces the Atom model in JITLink with a blocks-and-symbols model.
The blocks-and-symbols model represents relocatable object files as bipartite
graphs, with one set of nodes representing contiguous content (Blocks) and
another representing named or anonymous locations (Symbols) within a Block.
Relocations are represented as edges from Blocks to Symbols. This scheme
removes layout constraints (simplifying handling of MachO alt-entry symbols,
and hopefully ELF sections at some point in the future) and simplifies some
relocation logic.

llvm-svn: 373689
2019-10-04 03:55:26 +00:00
Lang Hames 335676ee62 [llvm-jitlink] Add optional slab allocator for testing locality optimizations.
The llvm-jitlink utility now accepts a '-slab-allocate <size>' option. If given,
llvm-jitlink will use a slab-based memory manager rather than the default
InProcessMemoryManager. Using a slab allocator will allow reliable testing of
future locality based optimizations (e.g. PLT and GOT elimination) in JITLink.

The <size> argument is a number, optionally followed by a units specifier (Kb,
Mb, or Gb). If the units are not given then the number is assumed to be in Kb.

llvm-svn: 371244
2019-09-06 19:21:55 +00:00
Lang Hames 41adc37408 [llvm-rtdyld][llvm-jitlink] Rename struct member to remove ambiguity.
This ambiguity (struct member name matching struct name) was causing errors on
a few of the MSVC bots. Hopefully this should fix it.

llvm-svn: 370969
2019-09-04 20:26:26 +00:00
Lang Hames 7966953793 [llvm-rtdyld] Add timers to match llvm-jitlink.
When using llvm-rtdyld to execute code, -show-times will now show the time
taken to load the object files, apply relocations, and execute the
rtdyld-linked code.

llvm-svn: 370968
2019-09-04 20:26:25 +00:00
Lang Hames 200415c6dc [JITLink] Fix the show-timers option on llvm-jitlink.
No longer constantly shows times (even when -show-times=false). When shown,
times are now correctly grouped.

llvm-svn: 370951
2019-09-04 18:38:29 +00:00
Lang Hames fd10536a8c [JITLink] Fix bogus TimerGroup constructor call.
llvm-svn: 370088
2019-08-27 18:05:05 +00:00
Lang Hames 6fd3960066 [JITLink] Add timers and -show-times option to llvm-jitlink.
The timers track time spent loading objects, linking, and (if applicable)
running JIT-link'd code.

llvm-svn: 370075
2019-08-27 15:51:19 +00:00
Jonas Devlieghere 0eaee545ee [llvm] Migrate llvm::make_unique to std::make_unique
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.

llvm-svn: 369013
2019-08-15 15:54:37 +00:00
Lang Hames 52a34a78d9 [ORC] Refactor definition-generation, add a generator for static libraries.
This patch replaces the JITDylib::DefinitionGenerator typedef with a class of
the same name, and adds support for attaching a sequence of DefinitionGeneration
objects to a JITDylib.

This patch also adds a new definition generator,
StaticLibraryDefinitionGenerator, that can be used to add symbols fom a static
library to a JITDylib. An object from the static library will be added (via
a supplied ObjectLayer reference) whenever a symbol from that object is
referenced.

To enable testing, lli is updated to add support for the --extra-archive option
when running in -jit-kind=orc-lazy mode.

llvm-svn: 368707
2019-08-13 16:05:18 +00:00
Lang Hames f5a885fddd [JITLink][ORC] Add EHFrameRegistrar interface, use in EHFrameRegistrationPlugin.
Replaces direct calls to eh-frame registration with calls to methods on an
EHFrameRegistrar instance. This allows clients to substitute a registrar that
registers frames in a remote process via IPC/RPC.

llvm-svn: 365098
2019-07-04 00:05:12 +00:00
Daniel Sanders cd0bc47836 Break a couple more false dependencies on target libraries
Summary: Repeat r361567 for a few more tools.

Reviewers: bogner

Reviewed By: bogner

Subscribers: mgorny, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D62438

llvm-svn: 363011
2019-06-10 23:52:38 +00:00
Lang Hames 23085ec36d [JITLink] Add a test for zero-filled content.
Also updates RuntimeDyldChecker and llvm-rtdyld to support zero-fill tests by
returning a content address of zero (but no error) for zero-fill atoms, and
treating loads from zero as returning zero.

llvm-svn: 360547
2019-05-12 22:26:33 +00:00
Lang Hames a9fdf375b3 [ORC] Add a 'plugin' interface to ObjectLinkingLayer for events/configuration.
ObjectLinkingLayer::Plugin provides event notifications when objects are loaded,
emitted, and removed. It also provides a modifyPassConfig callback that allows
plugins to modify the JITLink pass configuration.

This patch moves eh-frame registration into its own plugin, and teaches
llvm-jitlink to only add that plugin when performing execution runs on
non-Windows platforms. This should allow us to re-enable the test case that was
removed in r359198.

llvm-svn: 359357
2019-04-26 22:58:39 +00:00
Lang Hames d959a609a4 [JITLink] Add support for passing arguments to jit-linked code.
The --args option can now be used to pass arguments to code linked with
llvm-jitlink. E.g.

$ llvm-jitlink file1.o file2.o --args a b c

is equivalent to:

$ ld -o program file1.o file2.o
$ ./program a b c

llvm-svn: 359115
2019-04-24 17:23:05 +00:00
Lang Hames b1ba4d8a8a [JITLink] Refer to FDE's CIE (not the most recent CIE) when parsing eh-frame.
Frame Descriptor Entries (FDEs) have a pointer back to a Common Information
Entry (CIE) that describes how the rest FDE should be parsed. JITLink had been
assuming that FDEs always referred to the most recent CIE encountered, but the
spec allows them to point back to any previously encountered CIE. This patch
fixes JITLink to look up the correct CIE for the FDE.

The testcase is a MachO binary with an FDE that refers to a CIE that is not the
one immediately proceeding it (the layout can be viewed wit
'dwarfdump --eh-frame <testcase>'. This test case had to be a binary as llvm-mc
now sorts FDEs (as of r356216) to ensure FDEs *do* point to the most recent CIE.

llvm-svn: 359105
2019-04-24 15:15:55 +00:00
Nico Weber 405e62b805 Attemp get llvm-jitlink building on Windows
By removing an include of dlfcn.h that looks unused.

And clang-format a too-long line while here.

llvm-svn: 358864
2019-04-21 23:50:24 +00:00
Lang Hames bc76bbcaa0 [JITLink] Add an option to dump relocated section content.
The -dump-relocated-section-content option will dump the contents of each
section after relocations are applied, and before any checks are run or
code executed.

llvm-svn: 358863
2019-04-21 20:34:19 +00:00
Lang Hames daed9b10f1 [JITLink] Add BinaryFormat to JITLink's dependencies.
Hopefully this will fix the missing dependence on llvm::identify_magic that is
showing up on some PPC bots. E.g.

http://lab.llvm.org:8011/builders/clang-ppc64le-linux-multistage/builds/9617

llvm-svn: 358827
2019-04-20 19:48:45 +00:00
Lang Hames 11c8dfa583 Initial implementation of JITLink - A replacement for RuntimeDyld.
Summary:

JITLink is a jit-linker that performs the same high-level task as RuntimeDyld:
it parses relocatable object files and makes their contents runnable in a target
process.

JITLink aims to improve on RuntimeDyld in several ways:

(1) A clear design intended to maximize code-sharing while minimizing coupling.

RuntimeDyld has been developed in an ad-hoc fashion for a number of years and
this had led to intermingling of code for multiple architectures (e.g. in
RuntimeDyldELF::processRelocationRef) in a way that makes the code more
difficult to read, reason about, extend. JITLink is designed to isolate
format and architecture specific code, while still sharing generic code.

(2) Support for native code models.

RuntimeDyld required the use of large code models (where calls to external
functions are made indirectly via registers) for many of platforms due to its
restrictive model for stub generation (one "stub" per symbol). JITLink allows
arbitrary mutation of the atom graph, allowing both GOT and PLT atoms to be
added naturally.

(3) Native support for asynchronous linking.

JITLink uses asynchronous calls for symbol resolution and finalization: these
callbacks are passed a continuation function that they must call to complete the
linker's work. This allows for cleaner interoperation with the new concurrent
ORC JIT APIs, while still being easily implementable in synchronous style if
asynchrony is not needed.

To maximise sharing, the design has a hierarchy of common code:

(1) Generic atom-graph data structure and algorithms (e.g. dead stripping and
 |  memory allocation) that are intended to be shared by all architectures.
 |
 + -- (2) Shared per-format code that utilizes (1), e.g. Generic MachO to
       |  atom-graph parsing.
       |
       + -- (3) Architecture specific code that uses (1) and (2). E.g.
                JITLinkerMachO_x86_64, which adds x86-64 specific relocation
                support to (2) to build and patch up the atom graph.

To support asynchronous symbol resolution and finalization, the callbacks for
these operations take continuations as arguments:

  using JITLinkAsyncLookupContinuation =
      std::function<void(Expected<AsyncLookupResult> LR)>;

  using JITLinkAsyncLookupFunction =
      std::function<void(const DenseSet<StringRef> &Symbols,
                         JITLinkAsyncLookupContinuation LookupContinuation)>;

  using FinalizeContinuation = std::function<void(Error)>;

  virtual void finalizeAsync(FinalizeContinuation OnFinalize);

In addition to its headline features, JITLink also makes other improvements:

  - Dead stripping support: symbols that are not used (e.g. redundant ODR
    definitions) are discarded, and take up no memory in the target process
    (In contrast, RuntimeDyld supported pointer equality for weak definitions,
    but the redundant definitions stayed resident in memory).

  - Improved exception handling support. JITLink provides a much more extensive
    eh-frame parser than RuntimeDyld, and is able to correctly fix up many
    eh-frame sections that RuntimeDyld currently (silently) fails on.

  - More extensive validation and error handling throughout.

This initial patch supports linking MachO/x86-64 only. Work on support for
other architectures and formats will happen in-tree.

Differential Revision: https://reviews.llvm.org/D58704

llvm-svn: 358818
2019-04-20 17:10:34 +00:00