some more bullet-proofing/enhancements for tryEvaluate. This shouldn't
cause any behavior changes except for handling cases where we were
crashing before and being able to evaluate a few more cases in tryEvaluate.
This should settle the minor mess surrounding r59196.
llvm-svn: 59224
little rude; I figure it's cleaner to just back this out now so
it doesn't get forgotten or mixed up with other checkins.
The modification to isICE is simply wrong; I've added a test that the
change to isICE breaks.
I'm pretty sure the modification to tryEvaluate is also wrong.
At the very least, there's some serious miscommunication going on here,
as this is going in exactly the opposite direction of r59105. My
understanding is that tryEvaluate is not supposed to care about side
effects. That said, a lot of the clients to tryEvaluate are
expecting it to enforce a no-side-effects policy, so we probably need
another method that provides that guarantee.
llvm-svn: 59212
- Evaluation of , operator used bogus assumption that LHS could be
evaluated as an integral expression even though its type is
unspecified.
This change is making isICE very permissive of the LHS in non-evaluated
contexts because it is not clear what predicate we would use to reject
code here. The standard didn't offer me any guidance; opinions?
llvm-svn: 59196
conversion functions. Instead, we just use a placeholder identifier
for these (e.g., "<constructor>") and override NamedDecl::getName() to
provide a human-readable name.
This is one potential solution to the problem; another solution would
be to replace the use of IdentifierInfo* in NamedDecl with a different
class that deals with identifiers better. I'm also prototyping that to
see how it compares, but this commit is better than what we had
previously.
llvm-svn: 59193
functions for built-in operators, e.g., the builtin
bool operator==(int const*, int const*)
can be used for the expression "x1 == x2" given:
struct X {
operator int const*();
} x1, x2;
The scheme for handling these built-in operators is relatively simple:
for each candidate required by the standard, create a special kind of
candidate function for the built-in. If overload resolution picks the
built-in operator, we perform the appropriate conversions on the
arguments and then let the normal built-in operator take care of it.
There may be some optimization opportunity left: if we can reduce the
number of built-in operator overloads we generate, overload resolution
for these cases will go faster. However, one must be careful when
doing this: GCC generates too few operator overloads in our little
test program, and fails to compile it because none of the overloads it
generates match.
Note that we only support operator overload for non-member binary
operators at the moment. The other operators will follow.
As part of this change, ImplicitCastExpr can now be an lvalue.
llvm-svn: 59148
This pushes it a lot closer to being able to deal with most of the stuff
CodeGen's constant expression evaluator knows how to deal with. This
also fixes PR3003.
The test could possibly use some improvement, but this'll work for now.
Test 6 is inspired by PR3003; the other tests are mostly just designed
to exercise the new code. The reason for the funny structure of the
tests is that type fixing for arrays inside of structs is the only place
in Sema that calls tryEvaluate, at least for the moment.
llvm-svn: 59125
crashing because we errors are ignored in subexpressions that are not evaluated,
but we still evaluate the result of parents. This would cause an assertion
because the erroneous subexpr didn't have its result value set to the right type.
llvm-svn: 59110
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
When allocating an array for ParamInfo, the "decl->getNumParams()" call was used, but this will return 0 since it checks ParamInfo (which isn't yet defined and is null).
The result was that ParamInfo got an array of zero length to hold the ParmVarDecls.
llvm-svn: 58850
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
llvm-svn: 58817
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767
duplication in the handling of copy-initialization by constructor,
which occurs both for initialization of a declaration and for
overloading. The initialization code is due for some refactoring.
llvm-svn: 58756
when appropriate.
Conversions for class types now make use of copy constructors. I've
replaced the egregious hack allowing class-to-class conversions with a
slightly less egregious hack calling these conversions standard
conversions (for overloading reasons).
llvm-svn: 58622
conversions.
Notes:
- Overload resolution for converting constructors need to prohibit
user-defined conversions (hence, the test isn't -verify safe yet).
- We still use hacks for conversions from a class type to itself.
This will be the case until we start implicitly declaring the appropriate
special member functions. (That's next on my list)
llvm-svn: 58513
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
llvm-svn: 58499
of copy initialization. Other pieces of the puzzle:
- Try/Perform-ImplicitConversion now handles implicit conversions
that don't involve references.
- Try/Perform-CopyInitialization uses
CheckSingleAssignmentConstraints for C. PerformCopyInitialization
is now used for all argument passing and returning values from a
function.
- Diagnose errors with declaring references and const values without
an initializer. (Uses a new Action callback, ActOnUninitializedDecl).
We do not yet have implicit conversion sequences for reference
binding, which means that we don't have any overloading support for
reference parameters yet.
llvm-svn: 58353
- Do not allow expressions to ever have reference type
- Extend Expr::isLvalue to handle more cases where having written a
reference into the source implies that the expression is an lvalue
(e.g., function calls, C++ casts).
- Make GRExprEngine::VisitCall treat the call arguments as lvalues when
they are being bound to a reference parameter.
llvm-svn: 58306
- CastExpr is the root of all casts
- ImplicitCastExpr is (still) used for all explicit casts
- ExplicitCastExpr is now the root of all *explicit* casts
- ExplicitCCastExpr (new name needed!?) is a C-style cast in C or C++
- CXXFunctionalCastExpr inherits from ExplicitCastExpr
- CXXNamedCastExpr inherits from ExplicitCastExpr and is the root of all
of the C++ named cast expression types (static_cast, dynamic_cast, etc.)
- Added classes CXXStaticCastExpr, CXXDynamicCastExpr,
CXXReinterpretCastExpr, and CXXConstCastExpr to
Also, fixed returned-stack-addr.cpp, which broke once when we fixed
reinterpret_cast to diagnose double->int* conversions and again when
we eliminated implicit conversions to reference types. The fix is in
both testcase and SemaChecking.cpp.
Most of this patch is simply support for the renaming. There's very
little actual change in semantics.
llvm-svn: 58264
- Implement child_begin() and child_end() for AsmStmt. Previously these had stub implementations that did not iterate over the input/output operands of an inline assembly statement.
- Use ExprIterator for performing iteration over input/output operands.
llvm-svn: 58261