visit instructions before their uses, since InstructionSimplify does a
better job in that case. All this prompted by Frits van Bommel.
llvm-svn: 122343
a couple of existing transforms. This fires surprisingly often, for
example when compiling gcc "(X+(-1))+1->X" fires quite a lot as well
as various "and" simplifications (usually with a phi node operand).
Most of the time this doesn't make a real difference since the same
thing would have been done elsewhere anyway, eg: by instcombine, but
there are a few places where this results in simplifications that we
were not doing before.
llvm-svn: 122326
of the problems with my last attempt were in the updating of LiveIntervals
rather than the coalescing itself. Therefore, I decided to get that right first
by essentially reimplementing the existing PHIElimination using LiveIntervals.
It works correctly, with only a few tests failing (which may not be legitimate
failures) and no new verifier failures (at least as far as I can tell, I didn't
count the number per file).
llvm-svn: 122321
Type legalization splits up i64 values into pairs of i32 values, which leads
to poor quality code when inserting or extracting i64 vector elements.
If the vector element is loaded or stored, it can be treated as an f64 value
and loaded or stored directly from a VPR register. Use the pre-legalization
DAG combiner to cast those vector elements to f64 types so that the type
legalizer won't mess them up. Radar 8755338.
llvm-svn: 122319
section.
This helps because in practice sections form a dag with debug sections pointing
to text sections. Finishing up the text sections first makes the debug section
relaxation trivial.
llvm-svn: 122314
to be the one we want to use. bugpoint reduced testcase is a little large,
I'll see if I can simplify it down more.
Fixes part of rdar://8782207
llvm-svn: 122307
tPseudoInst class, its size was changed from "special" to "2 bytes". This is
incorrect because the jump table will no longer be taken into account when
calculating branch offsets.
<rdar://problem/8782216>
llvm-svn: 122303
Edge bundles is an annotation on the CFG that turns it into a bipartite directed
graph where each basic block is connected to an outgoing and an ingoing bundle.
These bundles are useful for identifying regions of the CFG for live range
splitting.
llvm-svn: 122301
This implementation already exists as ConnectedVNInfoEqClasses in
LiveInterval.cpp, and it seems to be generally useful to have a light-weight way
of forming equivalence classes of small integers.
IntEqClasses doesn't allow enumeration of the elements in a class.
llvm-svn: 122293
it could only be tested indirectly, via instcombine, gvn or some other
pass that makes use of InstructionSimplify, which means that testcases
had to be carefully contrived to dance around any other transformations
that that pass did.
llvm-svn: 122264
(they had just been forgotten before). Adding Xor causes "main" in the
existing testcase 2010-11-01-lshr-mask.ll to be hugely more simplified.
llvm-svn: 122245
argument. The generated alloca has to have at least the alignment of the
byval, if not, the client may be making assumptions that the new alloca won't
satisfy.
llvm-svn: 122234
ARM (and other 32-bit-only) targets support for i8 and i16 overflow
multiplies. The generated code isn't great, but this at least fixes
CodeGen/Generic/overflow.ll when running on ARM hosts.
llvm-svn: 122221
the same as setcc. Optimize ADDC(0,0,FLAGS) -> SET_CARRY(FLAGS). This is
a step towards finishing off PR5443. In the testcase in that bug we now get:
movq %rdi, %rax
addq %rsi, %rax
sbbq %rcx, %rcx
testb $1, %cl
setne %dl
ret
instead of:
movq %rdi, %rax
addq %rsi, %rax
movl $0, %ecx
adcq $0, %rcx
testq %rcx, %rcx
setne %dl
ret
llvm-svn: 122219
doesn't, match it back to setb.
On a 64-bit version of the testcase before we'd get:
movq %rdi, %rax
addq %rsi, %rax
sbbb %dl, %dl
andb $1, %dl
ret
now we get:
movq %rdi, %rax
addq %rsi, %rax
setb %dl
ret
llvm-svn: 122217
their carry depenedencies with MVT::Flag operands) and use clean and beautiful
EFLAGS dependences instead.
We do this by changing the modelling of SBB/ADC to have EFLAGS input and outputs
(which is what requires the previous scheduler change) and change X86 ISelLowering
to custom lower ADDC and friends down to X86ISD::ADD/ADC/SUB/SBB nodes.
With the previous series of changes, this causes no changes in the testsuite, woo.
llvm-svn: 122213
Imagine we see:
EFLAGS = inst1
EFLAGS = inst2 FLAGS
gpr = inst3 EFLAGS
Previously, we would refuse to schedule inst2 because it clobbers
the EFLAGS of the predecessor. However, it also uses the EFLAGS
of the predecessor, so it is safe to emit. SDep edges ensure that
the right order happens already anyway.
This fixes 2 testsuite crashes with the X86 patch I'm going to
commit next.
llvm-svn: 122211
This resolves a README entry and technically resolves PR4916,
but we still get poor code for the testcase in that PR because
GVN isn't CSE'ing uadd with add, filed as PR8817.
Previously we got:
_test7: ## @test7
addq %rsi, %rdi
cmpq %rdi, %rsi
movl $42, %eax
cmovaq %rsi, %rax
ret
Now we get:
_test7: ## @test7
addq %rsi, %rdi
movl $42, %eax
cmovbq %rsi, %rax
ret
llvm-svn: 122182
the old thing end up on the instcombine worklist. Not doing this
can cause an extra top-level iteration of instcombine, burning
compile time.
llvm-svn: 122179
sadd formed is half the size of the original type. We can
now compile this into a sadd.i8:
unsigned char X(char a, char b) {
int res = a+b;
if ((unsigned )(res+128) > 255U)
abort();
return res;
}
llvm-svn: 122178
checking to see if the high bits of the original add result were dead.
Inserting a smaller add and zexting back to that size is not good enough.
This is likely to be the fix for 8816.
llvm-svn: 122177
alternative register allocator that does not require LiveIntervals by specifying
it on the command-line for a target that has StrongPHIElimination enabled by
default.
These checks are pretty meaningless anyways, since StrongPHIElimination and
PHIElimination are never used at the same time.
llvm-svn: 122176
which have trapping constant exprs in them due to PHI nodes.
Eliminating them can cause the constant expr to be evalutated
on new paths if the input edges are critical.
llvm-svn: 122164
It turns out that ppc backend has really weird interdependencies
over different hooks and all stuff is fragile wrt small changes.
This should fix PR8749
llvm-svn: 122155
use before rematerializing the load.
This allows us to produce:
addps LCPI0_1(%rip), %xmm2
Instead of:
movaps LCPI0_1(%rip), %xmm3
addps %xmm3, %xmm2
Saving a register and an instruction. The standard spiller already knows how to
do this.
llvm-svn: 122133
ARM::tMOVgpr2gpr. But this check didn't change. As a result, we were getting
misaligned references to the jump table from an ADR instruction.
There is a test case, but unfortunately it's sensitive to random code changes.
<rdar://problem/8782223>
llvm-svn: 122131
the loop predecessors.
The register can be live-out from a predecessor without being live-in to the
loop header if there is a critical edge from the predecessor.
llvm-svn: 122123
createMachineVerifierPass and MachineFunction::verify.
The banner is printed before the machine code dump, just like the printer pass.
llvm-svn: 122113
may be called. If the entry block is empty, the insertion point iterator will be
the "end()" value. Calling ->getParent() on it (among others) causes problems.
Modify materializeFrameBaseRegister to take the machine basic block and insert
the frame base register at the beginning of that block. (It's very similar to
what the code does all ready. The only difference is that it will always insert
at the beginning of the entry block instead of after a previous materialization
of the frame base register. I doubt that that matters here.)
<rdar://problem/8782198>
llvm-svn: 122104
BUILD_VECTOR operands where the element type is not legal. I had previously
changed this code to insert TRUNCATE operations, but that was just wrong.
llvm-svn: 122102
portion. While the fragment boundary is usually already aligned, it is possible for it not to be, which
would lead to a non-aligned final displacement.
llvm-svn: 122091
the operand uses the same register as a tied operand:
%r1 = add %r1, %r1
If add were a three-address instruction, kill flags would be required on at
least one of the uses. Since it is a two-address instruction, the tied use
operand must not have a kill flag.
This change makes the kill flag on the untied use operand optional.
llvm-svn: 122082
on the DragonEgg self-host bot. Unfortunately, the testcase is pretty messy and doesn't reduce well due to
interactions with other parts of InstCombine.
llvm-svn: 122072