Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
llvm-svn: 123063
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
It's similar to "linker_private_weak", but it's known that the address of the
object is not taken. For instance, functions that had an inline definition, but
the compiler decided not to inline it. Note, unlike linker_private and
linker_private_weak, linker_private_weak_def_auto may have only default
visibility. The symbols are removed by the linker from the final linked image
(executable or dynamic library).
llvm-svn: 111684
not part of the IR, are not uniqued, and may be safely RAUW'd.
This replaces a variety of alternate mechanisms for achieving
the same effect.
llvm-svn: 111681
alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
llvm-svn: 109643
Make MDNode::destroy private.
Fix the one thing that used MDNode::destroy, outside of MDNode itself.
One should never delete or destroy an MDNode explicitly. MDNodes
implicitly go away when there are no references to them (implementation
details aside).
llvm-svn: 109028
Objective-C metadata types which should be marked as "weak", but which the
linker will remove upon final linkage. However, this linkage isn't specific to
Objective-C.
For example, the "objc_msgSend_fixup_alloc" symbol is defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
Currently only supported on Darwin platforms.
llvm-svn: 107433
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
to fadd, fsub, and fmul, when used with a floating-point type. LLVM
has supported the new instructions since 2.6, so it's time to get
on board.
llvm-svn: 102971
We would return the error without inserting the new instruction
into the program, so it wouldn't get deallocated, and an abort
would trigger when the module was deleted.
llvm-svn: 100602
to used deferred resolution instead of creating a temporary
node + rauw. There is no reason to create the temporary
mdnode, then do rauw, then destroy it.
llvm-svn: 100086
This time it's for real! I am going to hook this up in the frontends as well.
The inliner has some experimental heuristics for dealing with the inline hint.
When given a -respect-inlinehint option, functions marked with the inline
keyword are given a threshold just above the default for -O3.
We need some experiments to determine if that is the right thing to do.
llvm-svn: 95466
Modules and ModuleProviders. Because the "ModuleProvider" simply materializes
GlobalValues now, and doesn't provide modules, it's renamed to
"GVMaterializer". Code that used to need a ModuleProvider to materialize
Functions can now materialize the Functions directly. Functions no longer use a
magic linkage to record that they're materializable; they simply ask the
GVMaterializer.
Because the C ABI must never change, we can't remove LLVMModuleProviderRef or
the functions that refer to it. Instead, because Module now exposes the same
functionality ModuleProvider used to, we store a Module* in any
LLVMModuleProviderRef and translate in the wrapper methods. The bindings to
other languages still use the ModuleProvider concept. It would probably be
worth some time to update them to follow the C++ more closely, but I don't
intend to do it.
Fixes http://llvm.org/PR5737 and http://llvm.org/PR5735.
llvm-svn: 94686
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
parser-global MDsOnInst vector and make ParseInstructionMetadata return
its result by-ref through an argument like the entire rest of the parser.
llvm-svn: 92302
getMDKindID/getMDKindNames methods to LLVMContext (and add
convenience methods to Module), eliminating MetadataContext.
Move the state that it maintains out to LLVMContext.
llvm-svn: 92259
I asked Devang to do back on Sep 27. Instead of going through the
MetadataContext class with methods like getMD() and getMDs(), just
ask the instruction directly for its metadata with getMetadata()
and getAllMetadata().
This includes a variety of other fixes and improvements: previously
all Value*'s were bloated because the HasMetadata bit was thrown into
value, adding a 9th bit to a byte. Now this is properly sunk down to
the Instruction class (the only place where it makes sense) and it
will be folded away somewhere soon.
This also fixes some confusion in getMDs and its clients about
whether the returned list is indexed by the MDID or densely packed.
This is now returned sorted and densely packed and the comments make
this clear.
This introduces a number of fixme's which I'll follow up on.
llvm-svn: 92235
Here is the original commit message:
This commit updates malloc optimizations to operate on malloc calls that have constant int size arguments.
Update CreateMalloc so that its callers specify the size to allocate:
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86311
MallocInst-autoupgrade users use non-TargetData-computed allocation sizes.
Optimization uses use TargetData to compute the allocation size.
Now that malloc calls can have constant sizes, update isArrayMallocHelper() to use TargetData to determine the size of the malloced type and the size of malloced arrays.
Extend getMallocType() to support malloc calls that have non-bitcast uses.
Update OptimizeGlobalAddressOfMalloc() to optimize malloc calls that have non-bitcast uses. The bitcast use of a malloc call has to be treated specially here because the uses of the bitcast need to be replaced and the bitcast needs to be erased (just like the malloc call) for OptimizeGlobalAddressOfMalloc() to work correctly.
Update PerformHeapAllocSRoA() to optimize malloc calls that have non-bitcast uses. The bitcast use of the malloc is not handled specially here because ReplaceUsesOfMallocWithGlobal replaces through the bitcast use.
Update OptimizeOnceStoredGlobal() to not care about the malloc calls' bitcast use.
Update all globalopt malloc tests to not rely on autoupgraded-MallocInsts, but instead use explicit malloc calls with correct allocation sizes.
llvm-svn: 86077
block with a blockaddress still referring to it' replace the invalid
blockaddress with a new blockaddress(@func, null) instead of a
inttoptr(1).
This changes the bitcode encoding format, and still needs codegen
support (this should produce a non-zero value, referring to the entry
block of the function would also be quite reasonable).
llvm-svn: 85678
$ llvm-as foo.ll -d -disable-output
which reads and prints the .ll file. BC encoding is the
next project. Testcase will go in once that works.
llvm-svn: 85368
Update all analysis passes and transforms to treat free calls just like FreeInst.
Remove RaiseAllocations and all its tests since FreeInst no longer needs to be raised.
llvm-svn: 84987
Most changes are cleanup, but there is 1 correctness fix:
I fixed InstCombine so that the icmp is removed only if the malloc call is removed (which requires explicit removal because the Worklist won't DCE any calls since they can have side-effects).
llvm-svn: 84772
Update testcases that rely on malloc insts being present.
Also prematurely remove MallocInst handling from IndMemRemoval and RaiseAllocations to help pass tests in this incremental step.
llvm-svn: 84292
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
llvm-svn: 83297
Constant uniquing tables. This allows distinct ConstantExpr objects
with the same operation and different flags.
Even though a ConstantExpr "a + b" is either always overflowing or
never overflowing (due to being a ConstantExpr), it's still necessary
to be able to represent it both with and without overflow flags at
the same time within the IR, because the safety of the flag may
depend on the context of the use. If the constant really does overflow,
it wouldn't ever be safe to use with the flag set, however the use
may be in code that is never actually executed.
This also makes it possible to merge all the flags tests into a single test.
llvm-svn: 80998