When the VFS uses a YAML file, the real file path for a
virtual file is described in the "external-contents" field. Example:
...
{
'type': 'file',
'name': 'a.h',
'external-contents': '/a/b/c/a.h'
}
Currently, when parsing umbrella directories, we use
vfs::recursive_directory_iterator to gather the header files to generate the
equivalent modules for. If the external contents for a header does not exist,
we currently are unable to build a module, since the VFS
vfs::recursive_directory_iterator will fail when it finds an entry without a
reliable real path.
Since the YAML file could be prepared ahead of time and shared among
different compiler invocations, an entry might not yet have a reliable
path in 'external-contents', breaking the iteration.
Give the VFS the capability to skip such entries whenever
'ignore-non-existent-contents' property is set in the YAML file.
rdar://problem/27531549
llvm-svn: 278457
Add 'ignore-non-existent-contents' to tell the VFS whether an invalid path
obtained via 'external-contents' should cause iteration on the VFS to stop.
If 'true', the VFS should ignore the entry and continue with the next. Allows
YAML files to be shared across multiple compiler invocations regardless of
prior existent paths in 'external-contents'. This global value is overridable
on a per-file basis.
This adds the parsing and write test part, but use by VFS comes next.
Differential Revision: https://reviews.llvm.org/D23422
rdar://problem/27531549
llvm-svn: 278456
This fixes a long-standing TODO by implementing a compiler check for supporting the _Atomic keyword. If the _Atomic keyword is supported by the compiler we should include it in the builtin library sources.
llvm-svn: 278454
One reason why we are (ab)using OutputSectionFactory class is
because it owns output sections. Technically there's no need
to have it own sections. So, this patch transfers the ownership
to Out<ELFT>.
llvm-svn: 278452
This method had some duplicate code when we did or did not have a dom tree. Refactor
it to remove the duplication, but also clean up the control flow to have less duplication.
llvm-svn: 278450
The reason why we had to assign offsets only to sections that
don't contain layout sections were unclear. It turned out that
we can live without it.
llvm-svn: 278449
The member function is a predicate, and doesn't apply any changes on the
object.
Patch by Visoiu Mistrih Francis!
Differential Revision: https://reviews.llvm.org/D23433
llvm-svn: 278444
Summary: This is a follow up to r278389, where I have introduced the bug
Reviewers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D23436
llvm-svn: 278442
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
Summary:
Notice that the data layout is changed: instead of using
std::pair<PointerIntPair<NodeType*, 1>, ChildItTy>, now use
std::pair<NodeRef, Optional<ChildItTy>>.
A NFC but worth noticing change is operator==(), since we only compare
an iterator against end(), it's better to put an assert there and make
people noticed when it fails.
Reviewers: dblaikie, chandlerc
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23146
llvm-svn: 278437
There were 2 versions of this method. A public one which takes a
const Instruction* and a private implementation which takes a mutable
Value* and casts to an Instruction*.
There was no need for the 2 versions as all callers pass a const Instruction*
and there was no need for a mutable pointer as we only do analysis here.
llvm-svn: 278434
Summary:
This patch adds IsVariadicFunction bit to summary in order
to not import variadic functions. Inliner doesn't inline
variadic functions because it is hard to reason about it.
This one small fix improves Importer by about 16%
(going from 86% to 100% of imported functions that are
inlined anywhere)
on some spec benchmarks like 'int' and others.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23339
llvm-svn: 278432
This helped to improved memory-folding and register coalescing optimizations.
Also, this patch fixed the tracker #17229.
Reviewer: Craig Topper.
Differential Revision: https://reviews.llvm.org/D23108
llvm-svn: 278431
It's sharing the integer G_CONSTANT for now since I don't *think* it creates
any ambiguity (even on weird archs). If that turns out wrong we can create a
G_PTRCONSTANT or something.
llvm-svn: 278423
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).
https://reviews.llvm.org/D23075
llvm-svn: 278421
It only makes sense to set on N_NO_DEAD_STRIP on a relocatable object file. Otherwise the bits aren't useful for anything. Matches the ld64 behaviour.
llvm-svn: 278419
Summary:
This is an extension of the fix in r271424. That fix dealt with builder
insert points being moved by SCEV expansion, but only for the lifetime
of the expand call. This change modifies the interface so that LSR can
safely call expand multiple times at the same insert point and do the
right thing if one of the expansions decides to move the original insert
point.
This is a fix for PR28719.
Reviewers: sanjoy
Subscribers: llvm-commits, mcrosier, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23342
llvm-svn: 278413
We should be using one of BIND_OPCODE_SET_DYLIB_SPECIAL_IMM, BIND_OPCODE_SET_DYLIB_ORDINAL_IMM,
and BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB depending on whether ordinals are <= 0, <= 15, > 15.
This matches the behaviour of ld64.
llvm-svn: 278407
We already had logic for binding opcodes had the same addend as last time. This adds
the cases where the ordinal, symbol name, type, and segment offsets are the same as
the last emitted ordinal.
This gets us one step closer to emitting rebase opcodes as compressed as ld64 can manage.
llvm-svn: 278405