Change D60691 caused some knock-on failures that weren't caught by the
existing tests. Firstly, selecting a CPU that should have had a
restricted FPU (e.g. `-mcpu=cortex-m4`, which should have 16 d-regs
and no double precision) could give the unrestricted version, because
`ARM::getFPUFeatures` returned a list of features including subtracted
ones (here `-fp64`,`-d32`), but `ARMTargetInfo::initFeatureMap` threw
away all the ones that didn't start with `+`. Secondly, the
preprocessor macros didn't reliably match the actual compilation
settings: for example, `-mfpu=softvfp` could still set `__ARM_FP` as
if hardware FP was available, because the list of features on the cc1
command line would include things like `+vfp4`,`-vfp4d16` and clang
didn't realise that one of those cancelled out the other.
I've fixed both of these issues by rewriting `ARM::getFPUFeatures` so
that it returns a list that enables every FP-related feature
compatible with the selected FPU and disables every feature not
compatible, which is more verbose but means clang doesn't have to
understand the dependency relationships between the backend features.
Meanwhile, `ARMTargetInfo::handleTargetFeatures` is testing for all
the various forms of the FP feature names, so that it won't miss cases
where it should have set `HW_FP` to feed into feature test macros.
That in turn caused an ordering problem when handling `-mcpu=foo+bar`
together with `-mfpu=something_that_turns_off_bar`. To fix that, I've
arranged that the `+bar` suffixes on the end of `-mcpu` and `-march`
cause feature names to be put into a separate vector which is
concatenated after the output of `getFPUFeatures`.
Another side effect of all this is to fix a bug where `clang -target
armv8-eabi` by itself would fail to set `__ARM_FEATURE_FMA`, even
though `armv8` (aka Arm v8-A) implies FP-Armv8 which has FMA. That was
because `HW_FP` was being set to a value including only the `FPARMV8`
bit, but that feature test macro was testing only the `VFP4FPU` bit.
Now `HW_FP` ends up with all the bits set, so it gives the right
answer.
Changes to tests included in this patch:
* `arm-target-features.c`: I had to change basically all the expected
results. (The Cortex-M4 test in there should function as a
regression test for the accidental double-precision bug.)
* `arm-mfpu.c`, `armv8.1m.main.c`: switched to using `CHECK-DAG`
everywhere so that those tests are no longer sensitive to the order
of cc1 feature options on the command line.
* `arm-acle-6.5.c`: been updated to expect the right answer to that
FMA test.
* `Preprocessor/arm-target-features.c`: added a regression test for
the `mfpu=softvfp` issue.
Reviewers: SjoerdMeijer, dmgreen, ostannard, samparker, JamesNagurne
Reviewed By: ostannard
Subscribers: srhines, javed.absar, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62998
llvm-svn: 362791
Now, when clang processes an argument of the form "-march=foo+x+y+z",
then instead of calling getArchExtFeature() for each of the extension
names "x", "y", "z" and appending the returned string to its list of
low-level subtarget features, it will call appendArchExtFeatures()
which does the appending itself.
The difference is that appendArchExtFeatures can add _more_ than one
low-level feature name to the output feature list if it has to, and
also, it gets told some information about what base architecture and
CPU the extension is going to go with, which means that "+fp" can now
mean something different for different CPUs. Namely, "+fp" now selects
whatever the _default_ FPU is for the selected CPU and/or
architecture, as defined in the ARM_ARCH or ARM_CPU_NAME macros in
ARMTargetParser.def.
On the clang side, I adjust DecodeARMFeatures to call the new
appendArchExtFeatures function in place of getArchExtFeature. This
means DecodeARMFeatures needs to be passed a CPU name and an ArchKind,
which meant changing its call sites to make those available, and also
sawing getLLVMArchSuffixForARM in half so that you can get an ArchKind
enum value out of it instead of a string.
Also, I add support here for the extension name "+fp.dp", which will
automatically look through the FPU list for something that looks just
like the default FPU except for also supporting double precision.
Differential Revision: https://reviews.llvm.org/D60697
llvm-svn: 362601
The new tests were failing, because I missed dependent patch D60697.
I have removed the failing cases for now, which I will restore once
D60697 is in.
llvm-svn: 362100
Given the existing infrastructure in LLVM side for +fp and +fp.dp,
this is more or less trivial, needing only one tiny source change and
a couple of tests.
Patch by Simon Tatham.
Differential Revision: https://reviews.llvm.org/D60699
llvm-svn: 362096