Commit Graph

9 Commits

Author SHA1 Message Date
Sanjoy Das ba0daee6b2 [StackMaps] Increase the size of the "location size" field
Summary:
In some cases LLVM (especially the SLP vectorizer) will create vectors
that are 256 bytes (or larger).  Given that this is intentional[0] is
likely to get more common, this patch updates the StackMap binary
format to deal with the spill locations for said vectors.

This change also bumps the stack map version from 2 to 3.

[0]: https://reviews.llvm.org/D32533#738350

Reviewers: reames, kavon, skatkov, javed.absar

Subscribers: mcrosier, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D32629

llvm-svn: 301615
2017-04-28 04:48:42 +00:00
Sanjoy Das 23f06e53d8 [Stackmap] Added callsite counts to emitted function information.
Summary:
It was previously not possible for tools to use solely the stackmap
information emitted to reconstruct the return addresses of callsites in
the map, which is necessary to use the information to walk a stack. This
patch adds per-function callsite counts when emitting the stackmap
section in order to resolve the problem. Note that this slightly alters
the stackmap format, so external tools parsing these maps will need to
be updated.

**Problem Details:**
Records only store their offset from the beginning of the function they
belong to. While these records and the functions are output in program
order, it is not possible to determine where the end of one function's
records are without the callsite count when processing the records to
compute return addresses.

Patch by Kavon Farvardin!

Reviewers: atrick, ributzka, sanjoy

Subscribers: nemanjai

Differential Revision: https://reviews.llvm.org/D23487

llvm-svn: 281532
2016-09-14 20:22:03 +00:00
Hal Finkel 9bbad03b98 [PowerPC] Use the ABI indirect-call protocol for patchpoints
We used to take the address specified as the direct target of the patchpoint
and did no TOC-pointer handling.  This, however, as not all that useful,
because MCJIT tends to create a lot of modules, and they have their own TOC
sections. Thus, to call from the generated code to other generated code, you
really need to switch TOC pointers. Make this work as expected, and under
ELFv1, tread the address as the function descriptor address so that the correct
TOC pointer can be loaded.

llvm-svn: 242217
2015-07-14 22:26:06 +00:00
David Blaikie 23af64846f [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
Rafael Espindola 86bd6a1202 Use the generic Lfunc_begin label on ppc.
This removes yet another custom label to mark the start of a function.

llvm-svn: 231390
2015-03-05 18:55:50 +00:00
Hal Finkel c19805a75d [PowerPC] Don't list R11 as a patchpoint scratch register
R11's status is the same under both the PPC64 ELF V1 and V2 ABIs: it is
reserved for use as an "environment pointer" for compilation models that
require such a thing. We don't, we also don't need a second scratch register,
and because we support only "local" patchpoint call targets, we might as well
let R11 be used for anyregcc patchpoints.

llvm-svn: 226369
2015-01-17 03:57:34 +00:00
Hal Finkel 934361a4b8 Revert "r225811 - Revert "r225808 - [PowerPC] Add StackMap/PatchPoint support""
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.

Original commit message:

This commit does two things:

 1. Refactors PPCFastISel to use more of the common infrastructure for call
    lowering (this lets us take advantage of this common code for lowering some
    common intrinsics, stackmap/patchpoint among them).

 2. Adds support for stackmap/patchpoint lowering. For the most part, this is
    very similar to the support in the AArch64 target, with the obvious differences
    (different registers, NOP instructions, etc.). The test cases are adapted
    from the AArch64 test cases.

One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).

StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!

llvm-svn: 225909
2015-01-14 01:07:51 +00:00
Hal Finkel 63fb928109 Revert "r225808 - [PowerPC] Add StackMap/PatchPoint support"
Reverting this while I investiage buildbot failures (segfaulting in
GetCostForDef at ScheduleDAGRRList.cpp:314).

llvm-svn: 225811
2015-01-13 18:25:05 +00:00
Hal Finkel 821befd52b [PowerPC] Add StackMap/PatchPoint support
This commit does two things:

 1. Refactors PPCFastISel to use more of the common infrastructure for call
    lowering (this lets us take advantage of this common code for lowering some
    common intrinsics, stackmap/patchpoint among them).

 2. Adds support for stackmap/patchpoint lowering. For the most part, this is
    very similar to the support in the AArch64 target, with the obvious differences
    (different registers, NOP instructions, etc.). The test cases are adapted
    from the AArch64 test cases.

One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).

StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!

llvm-svn: 225808
2015-01-13 17:48:12 +00:00