`llc -march` is problematic because it only switches the target
architecture, but leaves the operating system unchanged. This
occasionally leads to indeterministic tests because the OS from
LLVM_DEFAULT_TARGET_TRIPLE is used.
However we can simply always use `llc -mtriple` instead. This changes
all the tests to do this to avoid people using -march when they copy and
paste parts of tests.
This patch:
- Removes -march if the .ll file already has a matching `target triple`
directive or -mtriple argument.
- In all other cases changes -march=ppc32/-march=ppc64 to
-mtriple=ppc32--/-mtriple=ppc64--
See also the discussion in https://reviews.llvm.org/D35287
llvm-svn: 309754
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.
No code review, as discussed with Hal Finkel.
llvm-svn: 277624
The global entry point prologue currently assumes that the TOC
associated with a function is less than 2GB away from the function
entry point. This is always true when using the medium or small
code model, but may not be the case when using the large code model.
This patch adds a new variant of the ELFv2 global entry point prologue
that lifts the 2GB restriction when building with -mcmodel=large.
This works by emitting a quadword containing the distance from the
function entry point to its associated TOC immediately before the
entry point, and then using a prologue like:
ld r2,-8(r12)
add r2,r2,r12
Since creation of the entry point prologue is now split across two
separate routines (PPCLinuxAsmPrinter::EmitFunctionEntryLabel emits
the data word, PPCLinuxAsmPrinter::EmitFunctionBodyStart the prolog
code), I've switched to using named labels instead of just temporaries
to indicate the locations of the global and local entry points and the
new TOC offset data word.
These names are provided by new routines in PPCFunctionInfo modeled
after the existing PPCFunctionInfo::getPICOffsetSymbol.
Note that a corresponding change was committed to GCC here:
https://gcc.gnu.org/ml/gcc-patches/2015-12/msg00355.html
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D15500
llvm-svn: 257597
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Test by Nemanja Ivanovic.
Since ppc64le implies POWER8 as a minimum, it makes sense that the
same features are included. Since the pwr8 processor model will likely
be getting new features until the implementation is complete, I
created a new list to add these updates to. This will include them in
both pwr8 and ppc64le.
Furthermore, it seems that it would make sense to compose the feature
lists for other processor models (pwr3 and up). Per discussion in the
review, I will make this change in a subsequent patch.
In order to test the changes, I've added an additional run step to
test cases that specify -march=ppc64le -mcpu=pwr8 to omit the -mcpu
option. Since the feature lists are the same, the behaviour should be
unchanged.
llvm-svn: 227053
This patch builds upon the two preceding MC changes to implement the
basic ELFv2 function call convention. In the ELFv1 ABI, a "function
descriptor" was associated with every function, pointing to both the
entry address and the related TOC base (and a static chain pointer
for nested functions). Function pointers would actually refer to that
descriptor, and the indirect call sequence needed to load up both entry
address and TOC base.
In the ELFv2 ABI, there are no more function descriptors, and function
pointers simply refer to the (global) entry point of the function code.
Indirect function calls simply branch to that address, after loading it
up into r12 (as required by the ABI rules for a global entry point).
Direct function calls continue to just do a "bl" to the target symbol;
this will be resolved by the linker to the local entry point of the
target function if it is local, and to a PLT stub if it is global.
That PLT stub would then load the (global) entry point address of the
final target into r12 and branch to it. Note that when performing a
local function call, r2 must be set up to point to the current TOC
base: if the target ends up local, the ABI requires that its local
entry point is called with r2 set up; if the target ends up global,
the PLT stub requires that r2 is set up.
This patch implements all LLVM changes to implement that scheme:
- No longer create a function descriptor when emitting a function
definition (in EmitFunctionEntryLabel)
- Emit two entry points *if* the function needs the TOC base (r2)
anywhere (this is done EmitFunctionBodyStart; note that this cannot
be done in EmitFunctionBodyStart because the global entry point
prologue code must be *part* of the function as covered by debug info).
- In order to make use tracking of r2 (as needed above) work correctly,
mark direct function calls as implicitly using r2.
- Implement the ELFv2 indirect function call sequence (no function
descriptors; load target address into r12).
- When creating an ELFv2 object file, emit the .abiversion 2 directive
to tell the linker to create the appropriate version of PLT stubs.
Reviewed by Hal Finkel.
llvm-svn: 213489