Add a tutorial document explaining how to define a conversion from the Linalg
dialect to the LLVM IR dialect, bypassing the Affine dialect. It defines a
dynamic representation for a range and a view for the sake of type conversion.
Operation conversion becomes straightforward given the dynamic representation.
The code in the tutorial is better structured and better document that what we
currently have in the example, which will be updated separately.
--
PiperOrigin-RevId: 245498394
A unit attribute is an attribute that represents a value of `unit` type. The
`unit` type allows only one value forming a singleton set. This attribute value
is used to represent attributes that only have meaning from their existence.
One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
parameter. It could be represented as a boolean attribute(true or false), but a
value of false doesn't really bring any value. The parameter either is the
self/context or it isn't.
```mlir {.mlir}
// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1 {unitAttr : unit})
// A unit attribute can also be defined without the `unit` value specifier.
func @simple_form(i1 {unitAttr})
```
--
PiperOrigin-RevId: 245254045
other characters within the <>'s now that we can. This will allow quantized
types to use the pretty syntax (among others) after a few changes.
--
PiperOrigin-RevId: 243521268
This adds parsing, printing and some folding/canonicalization.
Also extends rewriting of subi %0, %0 to handle vectors and tensors.
--
PiperOrigin-RevId: 242448164
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955
restricted grammar. This will make certain common types much easier to read.
This is part tensorflow/mlir#1 of 2, which allows us to accept the new syntax. Part 2 will
change the asmprinter to automatically use it when appropriate, which will
require updating a bunch of tests.
This is motivated by the EuroLLVM tutorial and cleaning up the LLVM dialect aesthetics a bit more.
--
PiperOrigin-RevId: 242234821
Remove undesigned/unimplemented operations: reshape and view.
Add new LangRefDeletions.md file in /experimental to store things removed from public LangRef.md
PiperOrigin-RevId: 242230200
Includes a draft of documentation for the quantization setup.
Given how many comments such docs have garnered in the past, I've biased towards a lightly edited first-draft so that people can argue about terminology, approach and structure without having spent too much time on it.
Note that the sections under "Uniform quantization" were cribbed nearly verbatim from internal documentation that Daniel wrote.
PiperOrigin-RevId: 241768668
Historically, the LLVM IR dialect has been using the generic form of MLIR
operation syntax. It is verbose and often redundant. Introduce the custom
printing and parsing for all existing operations in the LLVM IR dialect.
Update the relevant documentation and tests.
--
PiperOrigin-RevId: 241617393
have no standard ops for working with these yet, this is simply enough to
represent and round trip them in the printer and parser.
--
PiperOrigin-RevId: 241102728
Example:
%call:2 = call @multi_return() : () -> (f32, i32)
use(%calltensorflow/mlir#0, %calltensorflow/mlir#1)
This cl also adds parser support for uniquely named result values. This means that a test writer can now write something like:
%foo, %bar = call @multi_return() : () -> (f32, i32)
use(%foo, %bar)
Note: The printer will still print the collapsed form.
PiperOrigin-RevId: 240860058
When multi-threading is enabled in the pass manager the meaning of the display
slightly changes. First, a new timing column is added, `User Time`, that
displays the total time spent across all threads. Secondly, the `Wall Time`
column displays the longest individual time spent amongst all of the threads.
This means that the `Wall Time` column will continue to give an indicator on the
perceived time, or clock time, whereas the `User Time` will display the total
cpu time.
Example:
$ mlir-opt foo.mlir -experimental-mt-pm -cse -canonicalize -convert-to-llvmir -pass-timing
===-------------------------------------------------------------------------===
... Pass execution timing report ...
===-------------------------------------------------------------------------===
Total Execution Time: 0.0078 seconds
---User Time--- ---Wall Time--- --- Name ---
0.0175 ( 88.3%) 0.0055 ( 70.4%) Function Pipeline
0.0018 ( 9.3%) 0.0006 ( 8.1%) CSE
0.0013 ( 6.3%) 0.0004 ( 5.8%) (A) DominanceInfo
0.0017 ( 8.7%) 0.0006 ( 7.1%) FunctionVerifier
0.0128 ( 64.6%) 0.0039 ( 50.5%) Canonicalizer
0.0011 ( 5.7%) 0.0004 ( 4.7%) FunctionVerifier
0.0004 ( 2.1%) 0.0004 ( 5.2%) ModuleVerifier
0.0010 ( 5.3%) 0.0010 ( 13.4%) LLVMLowering
0.0009 ( 4.3%) 0.0009 ( 11.0%) ModuleVerifier
0.0198 (100.0%) 0.0078 (100.0%) Total
PiperOrigin-RevId: 240636269
The spec allows zero-dimensional memrefs to exist and treats them essentially
as single-element buffers. Unlike single-dimensional memrefs of static shape
<1xTy>, zero-dimensional memrefs do not require indices to access the only
element they store. Add support of zero-dimensional memrefs to the LLVM IR
conversion. In particular, such memrefs are converted into bare pointers, and
accesses to them are converted to bare loads and stores, without the overhead
of `getelementptr %buffer, 0`.
PiperOrigin-RevId: 240579456
When converting to the LLVM IR Dialect, it is possible for the input IR to
contain LLVM IR Dialect operation and/or types, for example, some functions may
have been coverted to the LLVM IR Dialect already, or may have been created
using this dialect directly. Make sure that type conversion keeps LLVM IR
Dialect types unmodified and does not error out. Operations are already kept
as is.
PiperOrigin-RevId: 240574972
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640
* print-ir-before=(comma-separated-pass-list)
- Print the IR before each of the passes provided within the pass list.
* print-ir-before-all
- Print the IR before every pass in the pipeline.
* print-ir-after=(comma-separated-pass-list)
- Print the IR after each of the passes provided within the pass list.
* print-ir-after-all
- Print the IR after every pass in the pipeline.
* print-ir-module-scope
- Always print the Module IR, even for non module passes.
PiperOrigin-RevId: 238523649
* Separate MyAnalysis into MyFunctionAnalysis/MyModuleAnalysis to avoid potential confusion.
* Add an example of an inline lambda builder for PassPipelineRegistration.
* Clarify the wording on a few of the pass restrictions.
PiperOrigin-RevId: 237840325
These cleanups reflects some recent changes to the LLVM IR Dialect and the
infrastructure that affects it. In particular, add documentation on direct and
indirect function calls as well as remove the `call` and `call0` separation.
Change the prefix of custom types from `!llvm.type` to `!llvm` so that it
matches the IR. Remove the verifier check disallowing conditional branches to
the same block with arguments: identical arguments are now supported, and
different arguments will be caught later.
PiperOrigin-RevId: 237203452
Dialect attributes are defined as:
dialect-namespace `.` attr-name `:` attribute-value
Dialects can override any of the following hooks to verify the validity of a given attribute:
* verifyFunctionAttribute
* verifyFunctionArgAttribute
* verifyInstructionAttribute
PiperOrigin-RevId: 236507970
When lowering to MLIR(LLVMDialect) we unbox the structs that result
from converting static memrefs, that is, singleton structs
that just contain a raw pointer. This allows us to get rid of all
"extractvalue" instructions in the common case where shapes are fully
known.
PiperOrigin-RevId: 235706021
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.
PiperOrigin-RevId: 235682798
Addressing post-submit comments. The `getelementptr` operation now supports
non-constant indexes, similarly to LLVM, and this functionality is exercised by
the lowering to the dialect. Update the documentation accordingly.
List the values of integer comparison predicates, which currently correspond to
those of CmpIOp in MLIR. Ideally, we would use strings instead, but it
requires additional support for argument conversion in both the dialect
lowering pass and the LLVM translator.
PiperOrigin-RevId: 235678877
Add a documentation page on the key points of the conversion to LLVM IR. This
focuses on the aspects of conversion that are relevant for integration of the
LLVM IR dialect (and produced LLVM IR that is mostly a one-to-one translation)
into other projects. In particular, it describes the type conversion rules and
the memref model supporting dynamic sizes.
PiperOrigin-RevId: 235190772
The LLVM IR pass was bootstrapped without user documentation, following LLVM's
language reference and existing conversions between MLIR standard operations
and LLVM IR instructions. Provide concise documentation of the LLVM IR dialect
operations. This documentation does not describe the semantics of the
operations, which should match that of LLVM IR, but highlights the structural
differences in operation definitions, in particular using attributes instead of
constant-only values. It also describes pseudo-operations that exist only to
make the LLVM IR dialect self-contained within MLIR.
While it could have been possible to generate operation description from
TableGen, this opts for a more concise format where groups of related
operations are described together.
PiperOrigin-RevId: 235149136
Aggregate types where at least one dimension is zero do not fully make sense as
they cannot contain any values (their total size is zero). However, TensorFlow
and XLA support tensors with zero sizes, so we must support those too. This is
relatively safe since, unlike vectors and memrefs, we don't have first-class
element accessors for MLIR tensors.
To support sparse element attributes of vector types that have no non-zero
elements, make sure that index and value element attributes have tensor type so
that we never need to create a zero vector type internally. Note that this is
already consistent with the inline documentation of the sparse elements
attribute. Users of the sparse elements attribute should not rely on the
storage schema anyway.
PiperOrigin-RevId: 232896707
Existing IR syntax is ambiguous in type declarations in presence of zero sizes.
In particular, `0x1` in the type size can be interpreted as either a
hexadecimal literal corresponding to 1, or as two distinct decimal literals
separated by an `x` for sizes. Furthermore, the shape `<0xi32>` fails lexing
because it is expected to be an integer literal.
Fix the lexer to treat `0xi32` as an integer literal `0` followed by a bare
identifier `xi32` (look one character ahead and early return instead of
erroring out).
Disallow hexadecimal literals in type declarations and forcibly split the token
into multiple parts while parsing the type. Note that the splitting trick has
been already present to separate the element type from the preceding `x`
character.
PiperOrigin-RevId: 232880373
Existing type syntax contains the following productions:
function-type ::= type-list-parens `->` type-list
type-list ::= type | type-list-parens
type ::= <..> | function-type
Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function. We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.
Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level. Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications). Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.
PiperOrigin-RevId: 232528361
They are essentially both modelling MLIR OpTrait; the former achieves the
purpose via introducing corresponding symbols in TableGen, while the latter
just uses plain strings.
Unify them to provide a single mechanism to avoid confusion and to better
reflect the definitions on MLIR C++ side.
Ideally we should be able to deduce lots of these traits automatically via
other bits of op definitions instead of manually specifying them; but not
for now though.
PiperOrigin-RevId: 232191401
This commit introduces a generic dialect conversion/lowering/legalization pass
and illustrates it on StandardOps->LLVMIR conversion.
It partially reuses the PatternRewriter infrastructure and adds the following
functionality:
- an actual pass;
- non-default pattern constructors;
- one-to-many rewrites;
- rewriting terminators with successors;
- not applying patterns iteratively (unlike the existing greedy rewrite driver);
- ability to change function signature;
- ability to change basic block argument types.
The latter two things required, given the existing API, to create new functions
in the same module. Eventually, this should converge with the rest of
PatternRewriter. However, we may want to keep two pass versions: "heavy" with
function/block argument conversion and "light" that only touches operations.
This pass creates new functions within a module as a means to change function
signature, then creates new blocks with converted argument types in the new
function. Then, it traverses the CFG in DFS-preorder to make sure defs are
converted before uses in the dominated blocks. The generic pass has a minimal
interface with two hooks: one to fill in the set of patterns, and another one
to convert types for functions and blocks. The patterns are defined as
separate classes that can be table-generated in the future.
The LLVM IR lowering pass partially inherits from the existing LLVM IR
translator, in particular for type conversion. It defines a conversion pattern
template, instantiated for different operations, and is a good candidate for
tablegen. The lowering does not yet support loads and stores and is not
connected to the translator as it would have broken the existing flows. Future
patches will add missing support before switching the translator in a single
patch.
PiperOrigin-RevId: 230951202
This CL just changes various docs and comments to use the term "generic" and
"custom" when mentioning assembly forms. To be consist, several methods are
also renamed:
* FunctionParser::parseVerboseOperation() -> parseGenericOperation()
* ModuleState::hasShorthandForm() -> hasCustomForm()
* OpAsmPrinter::printDefaultOp() -> printGenericOp()
PiperOrigin-RevId: 230568819
This CL performs a bunch of cleanups related to EDSCs that are generally
useful in the context of using them with a simple wrapping C API (not in this
CL) and with simple language bindings to Python and Swift.
PiperOrigin-RevId: 230066505
Start simple with single predicate match & transform rules for attributes.
* Its unclear whether modelling Attr predicates will be needed so start with allowing matching attributes with a single predicate.
* The input and output attr type often differs and so add ability to specify a transform between the input and output format.
PiperOrigin-RevId: 229580879
- this change is already consistent with the current code
- having no constraints made the integer set spec look odd - as nothing appears
between ':' and the closing parenthesis
- there is no loss in representational power - an unconstrained set can always
be represented by a trivially true constraint
PiperOrigin-RevId: 229307353
Originally, terminators were special kinds of operation and could not be
extended by dialects. Only builtin terminators were supported and they had
custom parsers and printers. Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list). Calling printDefaultOp on a terminator
drops all successor information. Dialects are thus required to provide custom
parsers and printers for their terminators.
Introduce the syntax for the list of successors in the verbose from of the
operation. Add support for printing and parsing verbose operations with
successors.
Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.
Add tests for verbose parsing. It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.
PiperOrigin-RevId: 228566453
Alias identifiers can be used in the place of the types that they alias, and are defined as:
type-alias-def ::= '!' alias-name '=' 'type' type
type-alias ::= '!' alias-name
Example:
!avx.m128 = type vector<4 x f32>
...
"foo"(%x) : vector<4 x f32> -> ()
// becomes:
"foo"(%x) : !avx.m128 -> ()
PiperOrigin-RevId: 228271372
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect. Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results. LLVM IR made a similar choice. Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation. Handle signed division overflow and division by zero errors in
constant folding. Canonicalization is left for future work.
These operations are necessary to lower affine_apply's down to LLVM IR.
PiperOrigin-RevId: 228077549
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass. It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs. The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations. After that happens, LowerAffinePass becomes yet another
legalization.
PiperOrigin-RevId: 227566113
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.
This is step 19/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227163082
This operation is produced and used by the super-vectorization passes and has
been emitted as an abstract unregistered operation until now. For end-to-end
testing purposes, it has to be eventually lowered to LLVM IR. Matching
abstract operation by name goes into the opposite direction of the generic
lowering approach that is expected to be used for LLVM IR lowering in the
future. Register vector_type_cast operation as a part of the SuperVector
dialect.
Arguably, this operation is a special case of the `view` operation from the
Standard dialect. The semantics of `view` is not fully specified at this point
so it is safer to rely on a custom operation. Additionally, using a custom
operation may help to achieve clear dialect separation.
PiperOrigin-RevId: 225887305
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them. Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.
This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats. As a side effect, it delegates the decision on the bit width of the
`index` to the backends. Existing backends currently hardcode it to 64 bits.
The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats. The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it. Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.
As an observation, several places in the code use Type in places where a more
specific type could be used instead. Some of those are fixed by this commit.
PiperOrigin-RevId: 225844792
From the beginning, vector_transfer_read and vector_transfer_write opreations
were intended as a mid-level vectorization abstraction. In particular, they
are lowered to the StandardOps dialect before further processing. As such, it
does not make sense to keep them at the same level as StandardOps. Introduce
the new SuperVectorOps dialect and move vector_transfer_* operations there.
This will be used as a testbed for the generic lowering/legalization pass.
PiperOrigin-RevId: 225554492
Originally, loop steps were implemented using `addi` and `constant` operations
because `affine_apply` was not handled in the first implementation. The
support for `affine_apply` has been added, use it to implement the update of
the loop induction variable. This is more consistent with the lower and upper
bounds of the loop that are also implemented as `affine_apply`, removes the
dependence of the converted function on the StandardOps dialect and makes it
clear from the CFG function that all operations on the loop induction variable
are purely affine.
PiperOrigin-RevId: 225165337
An extensive discussion demonstrated that it is difficult to support `index`
types as elements of compound (vector, memref, tensor) types. In particular,
their size is unknown until the target-specific lowering takes place. MLIR may
need to store constants of the fixed-shape compound types (e.g.,
vector<4 x index>) internally and must know the size of the element type and
data layout constraints. The same information is necessary for target-specific
lowering and translation to reliably support compound types with `index`
elements, but MLIR does not have a dedicated target description mechanism yet.
The uses cases for compound types with `index` elements, should they appear,
can be handled via an `index_cast` operation that converts between `index` and
fixed-size integer types at the SSA value level instead of the type level.
PiperOrigin-RevId: 225064373
The semantics of 'select' is conventional: return the second operand if the
first operand is true (1 : i1) and the third operand otherwise. It is
applicable to vectors and tensors element-wise, similarly to LLVM instruction.
This operation is necessary to implement min/max to lower 'for' loops with
complex bounds to CFG functions and to support ternary operations in ML
functions. It is preferred to first-class min/max because of its simplicity,
e.g. it is not concered with signedness.
PiperOrigin-RevId: 223160860
Start the documentation file listing available MLIR passes. Briefly describe
the `-convert-to-cfg` and the `-lower-affine-apply` passes. These passes
serve as description templates for other passes. In particular, they include
the dialect and operation restrictions in the pass input and output.
PiperOrigin-RevId: 223076894
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation. In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation. This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`. The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold. First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place). Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses. Update the comment of the parser that did not correspond to the
code. Remove the unused isParenthesized argument from parseSSAUseAndTypeList.
Update the spec accordingly. Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax. Add a supplementary example of a branch to a basic block with multiple
arguments.
PiperOrigin-RevId: 221162655
time. The "Fast and Flexible Instruction Selection With Constraints" paper
from CC2018 makes a credible argument that dynamic costs aren't actually
necessary/important, and we are not using them.
- Check in my "MLIR Generic DAG Rewriter Infrastructure" design doc into the
source tree.
PiperOrigin-RevId: 221017546
It is unclear why vector types were not allowed to have "index" as element
type. Index values are integers, although of unknown bit width, and should
behave as such. Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.
PiperOrigin-RevId: 220630123
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions. (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.) Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes. For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof. Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like. Allow tensors whose element type is index for
indirection purposes.
The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them". Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.
PiperOrigin-RevId: 220614055
This binary operation is applicable to integers, vectors and tensors thereof
similarly to binary arithmetic operations. The operand types must match
exactly, and the shape of the result type is the same as that of the operands.
The element type of the result is always i1. The kind of the comparison is
defined by the "predicate" integer attribute. This attribute requests one of:
- equals to;
- not equals to;
- signed less than;
- signed less than or equals;
- signed greater than;
- signed greater than or equals;
- unsigned less than;
- unsigned less than or equals;
- unsigned greater than;
- unsigned greater than or equals.
Since integer values themselves do not have a sign, the comparison operator
specifies whether to use signed or unsigned comparison logic, i.e. whether to
interpret values where the foremost bit is set as negatives expressed as two's
complements or as positive values. For non-scalar operands, pairwise
per-element comparison is performed. Comparison operators on scalars are
necessary to implement basic control flow with conditional branches.
PiperOrigin-RevId: 220613566
Statement, which paves the way to make SSAValue's have a useful owner
available, which will allow subsequent patches to improve their use/def
chains.
While I'm poking at this, shrink sizeof(Instruction) and sizeof(Statement) by a
word by packing the kind and location together into a single PointerIntPair.
NFC.
PiperOrigin-RevId: 218959651
1) We incorrectly reassociated non-reassociative operations like subi, causing
miscompilations.
2) When constant folding, we didn't add users of the new constant back to the
worklist for reprocessing, causing us to miss some cases (pointed out by
Uday).
The code for tensorflow/mlir#2 is gross, but I'll add the new APIs in a followup patch.
PiperOrigin-RevId: 218803984
"shape_cast" only applies to tensors, and there are other operations that
actually affect shape, for example "reshape". Rename "shape_cast" to
"tensor_cast" in both the code and the documentation.
PiperOrigin-RevId: 218528122
This CL only converts the document to the g3doc format and does some minor
typesetting, e.g. removing unicode ellipsis and mdash symbols, replace single
quotes with backticks to trigger tt-type dispay, etc. The original document
is located at
https://docs.google.com/document/d/1KoVYgp-m-dgAyKwqRne2c72j0FoxpsdNgfa9DTfWGgw/view
Links to the sections of the same document are updated to point to the anchors
in the converted document whereas links to external documents are kept as is.
Cross-links between LangRef.md and Rationale.md are updated to point to the
relevant anchors in the g3doc files.
PiperOrigin-RevId: 218527560