This transform was originally added in r185257 but later removed in
r185415. The original transform would create instructions speculatively
and then discard them if the speculation was proved incorrect. This has
been replaced with a scheme that splits the transform into two parts:
preflight and fold. While we preflight, we build up fold actions that
inform the folding stage on how to act.
llvm-svn: 185667
This allows us to create switches even if instcombine has munged two of the
incombing compares into one and some bit twiddling. This was motivated by enum
compares that are common in clang.
llvm-svn: 185632
This implies annotating it as nounwind and its arguments as nocapture. To be
conservative, we do not annotate the arguments with noalias since some platforms
do not have restrict on the declaration for gettimeofday.
llvm-svn: 185502
I'm reverting this commit because:
1. As discussed during review, it needs to be rewritten (to avoid creating and
then deleting instructions).
2. This is causing optimizer crashes. Specifically, I'm seeing things like
this:
While deleting: i1 %
Use still stuck around after Def is destroyed: <badref> = select i1 <badref>, i32 0, i32 1
opt: /src/llvm-trunk/lib/IR/Value.cpp:79: virtual llvm::Value::~Value(): Assertion `use_empty() && "Uses remain when a value is destroyed!"' failed.
I'd guess that these will go away once we're no longer creating/deleting
instructions here, but just in case, I'm adding a regression test.
Because the code is bring rewritten, I've just XFAIL'd the original regression test. Original commit message:
InstCombine: Be more agressive optimizing 'udiv' instrs with 'select' denoms
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185415
Math functions are mark as readonly because they read the floating point
rounding mode. Because we don't vectorize loops that would contain function
calls that set the rounding mode it is safe to ignore this memory read.
llvm-svn: 185299
Changing the sign when comparing the base pointer would introduce all
sorts of unexpected things like:
%gep.i = getelementptr inbounds [1 x i8]* %a, i32 0, i32 0
%gep2.i = getelementptr inbounds [1 x i8]* %b, i32 0, i32 0
%cmp.i = icmp ult i8* %gep.i, %gep2.i
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = icmp ne i1 %cmp.i, %cmp.i1
ret i1 %cmp
into:
%cmp.i = icmp slt [1 x i8]* %a, %b
%cmp.i1 = icmp ult [1 x i8]* %a, %b
%cmp = xor i1 %cmp.i, %cmp.i1
ret i1 %cmp
By preserving the original sign, we now get:
ret i1 false
This fixes PR16483.
llvm-svn: 185259
Real world code sometimes has the denominator of a 'udiv' be a
'select'. LLVM can handle such cases but only when the 'select'
operands are symmetric in structure (both select operands are a constant
power of two or a left shift, etc.). This falls apart if we are dealt a
'udiv' where the code is not symetric or if the select operands lead us
to more select instructions.
Instead, we should treat the LHS and each select operand as a distinct
divide operation and try to optimize them independently. If we can
to simplify each operation, then we can replace the 'udiv' with, say, a
'lshr' that has a new select with a bunch of new operands for the
select.
llvm-svn: 185257
We may, after other optimizations, find ourselves with IR that looks
like:
%shl = shl i32 1, %y
%cmp = icmp ult i32 %shl, 32
Instead, we should just compare the shift count:
%cmp = icmp ult i32 %y, 5
llvm-svn: 185242
To support this we have to insert 'extractelement' instructions to pick the right lane.
We had this functionality before but I removed it when we moved to the multi-block design because it was too complicated.
llvm-svn: 185230
In this code we keep track of pointers that we are allowed to read from, if they are accessed by non-predicated blocks.
We use this list to allow vectorization of conditional loads in predicated blocks because we know that these addresses don't segfault.
llvm-svn: 185214
- Build debug metadata for 'bare' Modules using DIBuilder
- DebugIR can be constructed to generate an IR file (to be seen by a debugger)
or not in cases where the user already has an IR file on disk.
llvm-svn: 185193
I used the class to safely reset the state of the builder's debug location. I
think I have caught all places where we need to set the debug location to a new
one. Therefore, we can replace the class by a function that just sets the debug
location.
llvm-svn: 185165
No functionality change.
It should suffice to check the type of a debug info metadata, instead of
calling Verify. For cases where we know the type of a DI metadata, use
assert.
Also update testing cases to make them conform to the format of DI classes.
llvm-svn: 185135
This reverts commit r185099.
Looks like both the ppc-64 and mips bots are still failing after I reverted this
change.
Since:
1. The mips bot always performs a clean build,
2. The ppc64-bot failed again after a clean build (I asked the ppc-64
maintainers to clean the bot which they did... Thanks Will!),
I think it is safe to assume that this change was not the cause of the failures
that said builders were seeing. Thus I am recomitting.
llvm-svn: 185111
This reverts commit r185095. This is causing a FileCheck failure on
the 3dnow intrinsics on at least the mips/ppc bots but not on the x86
bots.
Reverting while I figure out what is going on.
llvm-svn: 185099
The category which an APFloat belongs to should be dependent on the
actual value that the APFloat has, not be arbitrarily passed in by the
user. This will prevent inconsistency bugs where the category and the
actual value in APFloat differ.
I also fixed up all of the references to this constructor (which were
only in LLVM).
llvm-svn: 185095
When we store values for reversed induction stores we must not store the
reversed value in the vectorized value map. Another instruction might use this
value.
This fixes 3 test cases of PR16455.
llvm-svn: 185051
The Builtin attribute is an attribute that can be placed on function call site that signal that even though a function is declared as being a builtin,
rdar://problem/13727199
llvm-svn: 185049