This patch adds Size member to SectionPiece so that getRangeAndSize
can just return a SectionPiece instead of a std::pair<SectionPiece *, uint_t>.
Also renamed the function.
llvm-svn: 270346
We were using std::pair to represents pieces of splittable section
contents. It hurt readability because "first" and "second" are not
meaningful. This patch give them names.
One more thing is that piecewise liveness information is stored to
the second element of the pair as a special value of output section
offset. It was confusing, so I defiend a new bit, "Live", in the
new struct.
llvm-svn: 270340
This fixes a potential bug when cross linking very large executables
on LLP64 machines such as Windows. On such platform, uintX_t is 64 bits
while unsigned is 32 bits.
llvm-svn: 270327
Most functions take destination buffers as the first arguments
just like memcpy, so this order is easier to read.
Also simplified the function.
llvm-svn: 270324
Lazy binding is quite important for use case like a shared build of
llvm. Also, if someone wants to disable it, it is better done in the
compiler (disable plt generation).
The only reason to keep it is to make it easier to add a new
architecture. But it doesn't really help much as it is possible to start
with non lazy relocation and plt code but still let the generic part
create a dedicated .got.plt and .rela.plt.
llvm-svn: 269982
If you specify the option in the form of --build-id=0x<hexstring>,
that hexstring is set as a build ID. We observed that the feature
is actually in use in some builds, so we want this feature.
llvm-svn: 269495
win32 was my case.
Before that change test failed with next error for me:
23> ******************** TEST 'lld :: ELF/mips-64-got.s' FAILED ********************
....
23> Command 3 Stderr:
23> relocation R_MIPS_GOT_PAGE out of range
llvm-svn: 269166
This is the option which sorts relocs to optimize dynamic linker performance.
-z combelocs is the default in gold, also it ignores -z nocombreloc,
this patch do the same.
Patch sorts relocations by symbols only and do not create any
DT_REL[A]COUNT entries. That is different with what gold/bfd do.
More information about option is here:
http://www.airs.com/blog/archives/186http://people.redhat.com/jakub/prelink.pdf, p.2
Differential revision: http://reviews.llvm.org/D19528
llvm-svn: 269066
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604
MIPS N64 ABI introduces .MIPS.options section which specifies miscellaneous
options to be applied to an object/shared/executable file. LLVM as well as
modern versions of GNU tools read and write the only type of the options -
ODK_REGINFO. It is exact copy of .reginfo section used by O32 ABI.
llvm-svn: 268485
Weak undefined symbols resolve to the image base. This is a little strange,
but it allows us to link function calls to such symbols. Normally such a
call will be guarded with a comparison, which will load a zero from the GOT.
There's one example of such a function call in crti.o in Linux's CRT.
As part of this change, I also needed to make the synthetic start and end
symbols image base relative in the case where their sections were empty,
so that PC-relative references to those symbols would continue to work.
Differential Revision: http://reviews.llvm.org/D19844
llvm-svn: 268350
This change simplifies the BuildId classes by removing a few member
functions and variables from them. It should also make it easy to
parallelize hash computation in future because now each BuildId object
see all inputs rather than one at a time.
llvm-svn: 268333
This patch implements a new design for the symbol table that stores
SymbolBodies within a memory region of the Symbol object. Symbols are mutated
by constructing SymbolBodies in place over existing SymbolBodies, rather
than by mutating pointers. As mentioned in the initial proposal [1], this
memory layout helps reduce the cache miss rate by improving memory locality.
Performance numbers:
old(s) new(s)
Without debug info:
chrome 7.178 6.432 (-11.5%)
LLVMgold.so 0.505 0.502 (-0.5%)
clang 0.954 0.827 (-15.4%)
llvm-as 0.052 0.045 (-15.5%)
With debug info:
scylla 5.695 5.613 (-1.5%)
clang 14.396 14.143 (-1.8%)
Performance counter results show that the fewer required indirections is
indeed the cause of the improved performance. For example, when linking
chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and
instructions per cycle increases from 0.78 to 0.83. We are also executing
many fewer instructions (15,516,401,933 down to 15,002,434,310), probably
because we spend less time allocating SymbolBodies.
The new mechanism by which symbols are added to the symbol table is by calling
add* functions on the SymbolTable.
In this patch, I handle local symbols by storing them inside "unparented"
SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating
these SymbolBodies, we can probably do that separately.
I also removed a few members from the SymbolBody class that were only being
used to pass information from the input file to the symbol table.
This patch implements the new design for the ELF linker only. I intend to
prepare a similar patch for the COFF linker.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html
Differential Revision: http://reviews.llvm.org/D19752
llvm-svn: 268178
This remove a fixme, cleans up the weak undef interaction with archives and
lets us keep weak undefs still weak if they resolve to shared.
llvm-svn: 267555
MIPS is the only target requires GOT header. We already have MIPS
specific code in the `GotSection` class, so move MIPS GOT header
generation there and delete redundant stuff like `GotHeaderEntriesNum`
field and `writeGotHeader` method.
Differential Revision: http://reviews.llvm.org/D19465
llvm-svn: 267460
The fix is to handle local symbols referring to SHF_MERGE sections.
Original message:
GC entries of SHF_MERGE sections.
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets
were used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267233
These are properties of a symbol name, rather than a particular instance
of a symbol in an object file. We can simplify the code by collecting these
properties in Symbol.
The MustBeInDynSym flag has been renamed ExportDynamic, as its semantics
have been changed to be the same as those of --dynamic-list and
--export-dynamic-symbol, which do not cause hidden symbols to be exported.
Differential Revision: http://reviews.llvm.org/D19400
llvm-svn: 267183
It is a fairly direct extension of the gc algorithm. For merge sections
instead of remembering just a live bit, we remember which offsets were
used.
This reduces the .rodata sections in chromium from 9648861 to 9477472
bytes.
llvm-svn: 267164
It turns out that this will read data from the section to properly
handle Elf_Rel implicit addends.
Sorry for the noise.
Original messages:
Try to fix Windows lld build.
Move getRelocTarget to ObjectFile.
It doesn't use anything from the InputSection.
llvm-svn: 267163
Originally, linker scripts were basically an alternative way to specify
options to the command line options. But as we add more features to hanlde
symbols and sections, many member functions needed to be templated.
Now most the members are templated. It is probably time to template the
entire class.
Previously, LinkerScript is an executor of the linker script as well as
a storage of linker script configurations. This is not suitable to template
the class because when we are reading linker script files, we don't know
the ELF type yet, so we can't instantiate ELF-templated classes.
In this patch, I defined a new class, ScriptConfiguration, to store
linker script configurations. ScriptParser writes parse results to it,
and LinkerScript uses them.
Differential Revision: http://reviews.llvm.org/D19302
llvm-svn: 266908
This reverts commit r266618. It breaks basically everything.
I think VS2013 doesn't interpret this code in the same way.
The size field (at least) is left uninitialized, causing all sorts of havok
(e.g. creating a 34GB file for a trivial hello world program).
The offending compiler reports itself as follows:
c:\release-vs2013>cl /?
Microsoft (R) C/C++ Optimizing Compiler Version 18.00.40629 for x64
Copyright (C) Microsoft Corporation. All rights reserved.
llvm-svn: 266857
With this patch we use the first scan over the relocations to remember
the information we found about them: will them be relaxed, will a plt be
used, etc.
With that the actual relocation application becomes much simpler. That
is particularly true for the interfaces in Target.h.
This unfortunately means that we now do two passes over relocations for
non SHF_ALLOC sections. I think this can be solved by factoring out the
code that scans a single relocation. It can then be used both as a scan
that record info and for a dedicated direct relocation of non SHF_ALLOC
sections.
I also think it is possible to reduce the number of enum values by
representing a target with just an OutputSection and an offset (which
can be from the start or end).
This should unblock adding features like relocation optimizations.
llvm-svn: 266158
It is possible to have FDEs with duplicate PCs if ICF was able to merge
functions with FDEs, or if the input files for some reason contained duplicate
FDEs. We previously weren't handling this correctly when producing the
contents of the .eh_frame_hdr section; we were dropping entries and leaving
null entries at the end of the section, which confused consumers of unwind
data, such as the backtrace() function.
Fix the bug by setting the FDE count to the number of FDEs actually emitted
into .eh_frame_hdr, rather than the number of FDEs in .eh_frame.
Differential Revision: http://reviews.llvm.org/D18911
llvm-svn: 265957
Now MustBeInDynSym is only true if the symbol really must be in the
dynamic symbol table.
IsUsedInRegularObj is only true if the symbol is used in a .o or -u. Not
a .so or a .bc.
A benefit is that this is now done almost entirilly during symbol
resolution. The only exception is copy relocations because of aliases.
This includes a small fix in that protected symbols in .so don't force
executable symbols to be exported.
This also opens the way for implementing internalize for -shared.
llvm-svn: 265826
The spec says:
If a symbol definition with STV_PROTECTED visibility from a shared
object is taken as resolving a reference from an executable or another
shared object, the SHN_UNDEF symbol table entry created has STV_DEFAULT
visibility.
llvm-svn: 265792
Previously, we supported only one hash function, FNV-1, so
BuildIdSection directly handled hash computation. In this patch,
I made BuildIdSection an abstract class and defined two subclasses,
BuildIdFnv1 and BuildIdMd5.
llvm-svn: 265737
start-lib and end-lib are options to link object files in the same
semantics as archive files. If an object is in start-lib and end-lib,
the object is linked only when the file is needed to resolve
undefined symbols. That means, if an object is in start-lib and end-lib,
it behaves as if it were in an archive file.
In this patch, I introduced a new notion, LazyObjectFile. That is
analogous to Archive file type, but that works for a single object
file instead of for an archive file.
http://reviews.llvm.org/D18814
llvm-svn: 265710
This requires knowing input section offsets in output sections before
scanRelocs. This is generally a good thing and should allow further
simplifications in the creation of dynamic relocations.
llvm-svn: 265673
We have to differentiate undefined symbols from bitcode and undefined
symbols from other sources.
Undefined symbols from bitcode should not inhibit the symbol being
internalized. Undefined symbols from other sources should.
llvm-svn: 265536
For each copy relocation that we create, look through the DSO's symbol table
for aliases and create a dynamic symbol for each one. This causes the copy
relocation to correctly interpose any aliases.
Copy relocations are relatively uncommon (on my machine, 56% of binaries in
/usr/bin have no copy relocations probably due to being PIEs, 97% of them
have <10, and the binary with the largest number of them has 97) so it's
probably fine to do this in a relatively inefficient way.
Differential Revision: http://reviews.llvm.org/D18731
llvm-svn: 265354
Our symbol representation was redundant, and some times would get out of
sync. It had an Elf_Sym, but some fields were copied to SymbolBody.
Different parts of the code were checking the bits in SymbolBody and
others were checking Elf_Sym.
There are two general approaches to fix this:
* Copy the required information and don't store and Elf_Sym.
* Don't copy the information and always use the Elf_Smy.
The second way sounds tempting, but has a big problem: we would have to
template SymbolBody. I started doing it, but it requires templeting
*everything* and creates a bit chicken and egg problem at the driver
where we have to find ELFT before we can create an ArchiveFile for
example.
As much as possible I compared the test differences with what gold and
bfd produce to make sure they are still valid. In most cases we are just
adding hidden visibility to a local symbol, which is harmless.
In most tests this is a small speedup. The only slowdown was scylla
(1.006X). The largest speedup was clang with no --build-id, -O3 or
--gc-sections (i.e.: focus on the relocations): 1.019X.
llvm-svn: 265293
DefinedElf was a superclass of DefinedRegular and SharedSymbol classes
and represented the notion of defined symbols created for ELF symbols.
It turned out that we didn't use that class often. We had only two
occurrences of dyn_cast'ing to DefinedElf, and both were easily
rewritten without it.
The class was also a bit confusing. The concept of "created for ELF
symbol" is orthogonal to defined/undefined types. However, we had
two distinct classes, DefinedElf and UndefinedElf.
This patch simply removes the class. Now the class hierarchy is one
level shallower.
llvm-svn: 265234
Some targets might require creation of thunks. For example, MIPS targets
require stubs to call PIC code from non-PIC one. The patch implements
infrastructure for thunk code creation and provides support for MIPS
LA25 stubs. Any MIPS PIC code function is invoked with its address
in register $t9. So if we have a branch instruction from non-PIC code
to the PIC one we cannot make the jump directly and need to create a small
stub to save the target function address.
See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- In relocation scanning phase we ask target about thunk creation necessity
by calling `TagetInfo::needsThunk` method. The `InputSection` class
maintains list of Symbols requires thunk creation.
- Reassigning offsets performed for each input sections after relocation
scanning complete because position of each section might change due
thunk creation.
- The patch introduces new dedicated value for DefinedSynthetic symbols
DefinedSynthetic::SectionEnd. Synthetic symbol with that value always
points to the end of the corresponding output section. That allows to
escape updating synthetic symbols if output sections sizes changes after
relocation scanning due thunk creation.
- In the `InputSection::writeTo` method we write thunks after corresponding
input section. Each thunk is written by calling `TargetInfo::writeThunk` method.
- The patch supports the only type of thunk code for each target. For now,
it is enough.
Differential Revision: http://reviews.llvm.org/D17934
llvm-svn: 265059
Local symbol which requires GOT entry initialized by "page" address.
This address is high 16 bits of sum of the symbol value and the relocation
addend. In the relocation scanning phase final values of symbols are unknown
so to reduce number of allocated GOT entries do the following trick. Save
all output sections referenced by GOT relocations during the relocation
scanning phase. Then later in the `GotSection::finalize` method calculate
number of "pages" required to cover all saved output sections and allocate
appropriate number of GOT entries. We assume the worst case - each 64kb
page of the output section has at least one GOT relocation against it.
Differential Revision: http://reviews.llvm.org/D18349
llvm-svn: 264730
Now local symbols have SymbolBody so we can handle all kind of symbols
in the GotSection::addEntry method. The patch moves the code from
addMipsLocalEntry to addEntry. NFC.
Differential Revision: http://reviews.llvm.org/D18302
llvm-svn: 264032
We want to make SymbolBody the central place to query symbol information.
This patch also renames canBePreempted to isPreemptible because I feel that
the latter is slightly better (the former is three words and the latter
is two words.)
llvm-svn: 263386
which was reverted because included
unrelative changes by mistake.
Original commit message:
[ELF] - Change all messages to lowercase to be consistent.
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263337
This patch implements --build-id. After the linker creates an output file
in the memory buffer, it computes the FNV1 hash of the resulting file
and set the hash to the .note section as a build-id.
GNU ld and gold have the same feature, but their default choice of the
hash function is different. Their default is SHA1.
We made a deliberate choice to not use a secure hash function for the
sake of performance. Computing a secure hash is slow -- for example,
MD5 throughput is usually 400 MB/s or so. SHA1 is slower than that.
As a result, if you pass --build-id to gold, then the linker becomes about
10% slower than that without the option. We observed a similar degradation
in an experimental implementation of build-id for LLD. On the other hand,
we observed only 1-2% performance degradation with the FNV hash.
Since build-id is not for digital certificate or anything, we think that
a very small probability of collision is acceptable.
We considered using other signals such as using input file timestamps as
inputs to a secure hash function. But such signals would have an issue
with build reproducibility (if you build a binary from the same source
tree using the same toolchain, the build id should become the same.)
GNU linkers accepts --build-id=<style> option where style is one of
"MD5", "SHA1", or an arbitrary hex string. That option is out of scope
of this patch.
http://reviews.llvm.org/D18091
llvm-svn: 263292
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263252
It was discussed to make all messages be
lowercase to be consistent with clang.
(also reverts the r263128 which fixed
build bot fail after r263125)
Original commit message:
[ELF] - Consistent spelling for error/warning messages
Previously error and warnings were not consistent in lld.
Some of them started from lowercase letter, others from
uppercase. Also there was one or two which had a dot at the end.
This patch changes all messages to start from uppercase letter if
they were not before.
Differential revision: http://reviews.llvm.org/D18045
llvm-svn: 263240
This patch adds --thread option and use parallel_for_each to write
sections in regular OutputSections.
This is the first patch to use more than one threads.
Note that --thread is off by default because it is experimental.
At this moment I still want to focus on single thread performance
because multi-threading is not a magic wand to fix performance
problems after all. It is generally very hard to make a slow program
faster by threads. Therefore, I want to make the linker as efficient
as possible first and then look for opportunity to make it even faster
using more than one core.
Here are some numbers to link programs with and without --threads
and using GNU gold. Numbers are in seconds.
Clang
w/o --threads 0.697
w --threads 0.528
gold 1.643
Scylla
w/o --threads 5.032
w --threads 4.935
gold 6.791
GNU gold
w/o --threads 0.550
w --threads 0.551
gold 0.737
I limited the number of cores these processes can use to 4 using
perf command, so although my machine has 20 physical cores, the
performance gain I observed should be reproducible with a machine
which is not as beefy as mine.
llvm-svn: 263190
Previously error and warnings were not consistent in lld.
Some of them started from lowercase letter, others from
uppercase. Also there was one or two which had a dot at the end.
This patch changes all messages to start from uppercase letter if
they were not before.
Differential revision: http://reviews.llvm.org/D18045
llvm-svn: 263125
It was a badly specified hack for when a tls relocation should be
propagated to the dynamic relocation table.
This replaces it with a not as bad hack of saying that a local dynamic
tls relocation is never preempted.
I will try to remove even that second hack in the next patch.
llvm-svn: 262955
Get rid of few accessors in that class, and replace
them with direct fields access.
Differential revision: http://reviews.llvm.org/D17879
llvm-svn: 262796
The patch fixes two related problems:
- If CIE augmentation string has 'L' token the CIE contains a byte
defines LSDA encoding. We should skip this byte in `getFdeEncoding`
routine. Before this fix we do not skip it and if the next token
is 'R' treat this byte as FDE encoding.
- FDE encoding format has separate flags e.g. DW_EH_PE_pcrel for
definition of relative pointers. We should add .eh_frame address to
the PC value iif the DW_EH_PE_pcrel is specified.
http://www.airs.com/blog/archives/460
There is one more not fixed problem in this code. If PC value is encoded
using signed relative format e.g. DW_EH_PE_sdata4 | DW_EH_PE_pcrel we
should sign extend result of read32 to perform calculation correctly.
I am going to fix that in a separate patch.
Differential Revision: http://reviews.llvm.org/D17733
llvm-svn: 262461
BSD linker scripts contain special cases to add NOP
padding to code sections. Syntax is next:
.init:
{
KEEP (*(.init))
} =0x90909090
(0x90 is NOP)
This patch implements that functionality.
llvm-svn: 262020
For shared libraries we allow any weak undefined symbol to eventually be
resolved, even if we never see a definition in another .so. This matches
the behavior when handling other undefined symbols in a shared library.
For executables, we require seeing a definition in a .so or resolve it
to zero. This is also similar to how non weak symbols are handled.
llvm-svn: 262017
This patch implements the same algorithm as LLD/COFF's ICF. I'm
not going to repeat the same description about how it works, so you
want to read the comment in ICF.cpp in this patch if you want to know
the details. This algorithm should be more powerful than the ICF
algorithm implemented in GNU gold. It can even merge mutually-recursive
functions (which is harder than one might think).
ICF is a fairly effective size optimization. Here are some examples.
LLD: 37.14 MB -> 35.80 MB (-3.6%)
Clang: 59.41 MB -> 57.80 MB (-2.7%)
The lacking feature is "safe" version of ICF. This merges all
identical sections. That is not compatible with a C/C++ language
requirement that two distinct functions must have distinct addresses.
But as long as your program do not rely on the pointer equality
(which is in many cases true), your program should work with the
feature. LLD works fine for example.
GNU gold implements so-called "safe ICF" that identifies functions
that are safe to merge by heuristics -- for example, gold thinks
that constructors are safe to merge because there is no way to
take an address of a constructor in C++. We have a different idea
which David Majnemer suggested that we add NOPs at beginning of
merged functions so that two or more pointers can have distinct
values. We can do whichever we want, but this patch does not
include neither.
http://reviews.llvm.org/D17529
llvm-svn: 261912
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
"Discarded" section is a marker for discarded sections, and we do not
use the instance except for checking its identity. In that sense, it
is just another type of a "null" pointer for InputSectionBase. So,
it doesn't have to be a real instance of InputSectionBase class.
In this patch, we no longer instantiate Discarded section but instead
use -1 as a pointer value. This eliminates a global variable which
needed initialization at startup.
llvm-svn: 261761
This is a preparation for ICF. If we merge two sections, we want to
align the merged section at the largest alignment requirement.
That means we want to update the alignment value, which was
impossible before this patch because Header is a const value.
llvm-svn: 261712
There is nothing aarch64 specific in here. If a symbol can be preempted,
we need to copy the full relocation to the dynamic linker.
If a symbol cannot be preempted, we can make the dynamic linker life
easier and produce a relative relocation.
This is directly equivalent to R_X86_64_64 to R_x86_64_RELATIVE
conversion.
llvm-svn: 261678
This patch fixes the R_AARCH64_ABS64 relocation when used in shared mode,
where it requires a dynamic R_AARCH64_RELATIVE relocation. To correct set
the addend on the dynamic relocation (since it will be used by the dynamic
linker), a new TargetInfo specific hook was created (getDynRelativeAddend)
to get the correct addend based on relocation type.
The patch fixes the issues when creating shared library code against
{init,fini}_array, where it issues R_AARCH64_ABS64 relocation against
local symbols.
llvm-svn: 261651
This reduces the .rodata of scyladb from 4501932 to 4334639 bytes (1.038
times smaller).
I don't think it is critical to support tail merging, just exact
duplicates, but given the code organization it was actually a bit easier
to support both.
llvm-svn: 261327
Previously, we added garbage-collected symbols to the symbol table
and filter them out when we were writing symbols to the file. In
this patch, garbage-collected symbols are filtered out from beginning.
llvm-svn: 261064
Previously, if both A and B are ".ctors", both compCtors(A, B) and
compCtors(B, A) are true, which is a violation of the strict weak
ordering because such function is not antisymmetric.
llvm-svn: 260633
Global constructors and destructors are guaranteed to be called
in the order as they appear in a translation unit. So we don't want
to mess up the order if they have the same priority.
llvm-svn: 260463
This basically reverts commit r260073 because it is found that
augmentation strings don't always start with "zR". It is reported
as https://llvm.org/bugs/show_bug.cgi?id=26541.
llvm-svn: 260294
This is the function equivalent of a copy relocation.
Since functions are expected to change sizes, we cannot use copy
relocations. In situations where one would be needed, what is done
instead is:
* Create a plt entry
* Output an undefined symbol whose addr is the plt entry.
The dynamic linker makes sure any shared library uses the plt entry as
the function address.
llvm-svn: 260224
I found that the handling of 'L' character in an augmentation string is
wrong because 'L' means that the next byte is the length field. I could
have fixed that by just skipping the next byte, but I decided to take a
different approach.
Teaching the linker about all the types of CIE internal records just to
skip them is silly. And the code doing that is not actually executed now
(that's why the bug did not cause any issue.) It is because the 'R' field,
which we want to read, is always at beginning of the CIE. So I reduced
the code dramatically by assuming that that's always the case. I want to
see how it works in the wild. If it doesn't work, we can roll this back
(with a fix for 'L').
http://reviews.llvm.org/D16939
llvm-svn: 260073
I removed "CIE/FIE size is too large" error because that was not
checking for correct error conditions. [UINT_MAX - 4, UINT_MAX) is
a correct range as a size of a CIE/FDE record. It's just that the
size cannot be larger than the section size.
llvm-svn: 259951
The variable was marking various cases where a symbol must be included
in the dynamic symbol table. Being used by a dynamic relocation was only
one of them.
llvm-svn: 259889
The previous names contained "Local" and "Current", but what we
are handling is always local and current, so they were redundant.
TlsIndex comes from "tls_index" struct that Ulrich Drepper is using
in this document to describe this data structure in GOT.
llvm-svn: 259852
Another case where we currently have almost duplicated code is the
creation of dynamic relocations. First to decide if we need one, then to
decide what to write.
This patch fixes it by passing more information from the relocation scan
to the section writing code. This is the same idea used for r258723.
I actually think it should be possible to simplify this further by
reordering things a bit in the writer. For example, we should be able to
represent almost every position in the file with an OutputSeciton and
offset. When writing it out we then just need to add the offset to the
OutputSection VA.
llvm-svn: 259829
-Bsymbolic-functions:
When creating a shared library, bind references to global
function symbols to the definition within the shared library, if any.
This patch also fixed behavior of already existent -Bsymbolic:
previously PLT entries were created even if -Bsymbolic was specified.
Differential revision: http://reviews.llvm.org/D16411
llvm-svn: 259481
Previously, the methods to get symbol addresses were somewhat scattered
in many places. You can use getEntryAddr returns the address of the symbol,
but if you want to get the GOT address for the symbol, you needed to call
Out<ELFT>::Got->getEntryAddr(Sym). This change adds new functions, getVA,
getGotVA, getGotPltVA, and getPltVA to SymbolBody, so that you can use
SymbolBody as the central place to ask about symbols.
http://reviews.llvm.org/D16710
llvm-svn: 259404
This avoids the need to have reserve and addString in sync.
We avoid hashing the global symbols again. This means that we don't
merge a global symbol that has the same name as some other string, but
that doesn't seem very common. The string table size is the same in
clang an scylladb with or without hashing global symbols again.
llvm-svn: 259136
This function is a predicate that a given relocation can be relaxed.
The previous name implied that it returns true if a given relocation
has already been optimized away.
llvm-svn: 259128
In many situations, we don't want to exit at the first error even in the
process model. For example, it is better to report all undefined symbols
rather than reporting the first one that the linker picked up randomly.
In order to handle such errors, we don't need to wrap everything with
ErrorOr (thanks for David Blaikie for pointing this out!) Instead, we
can set a flag to record the fact that we found an error and keep it
going until it reaches a reasonable checkpoint.
This idea should be applicable to other places. For example, we can
ignore broken relocations and check for errors after visiting all relocs.
In this patch, I rename error to fatal, and introduce another version of
error which doesn't call exit. That function instead sets HasError to true.
Once HasError becomes true, it stays true, so that we know that there
was an error if it is true.
I think introducing a non-noreturn error reporting function is by itself
a good idea, and it looks to me that this also provides a gradual path
towards lld-as-a-library (or at least embed-lld-to-your-program) without
sacrificing code readability with lots of ErrorOr's.
http://reviews.llvm.org/D16641
llvm-svn: 259069
This does not solve the problem that we call isGnuIFunc function
both from RelocationSection and from the Writer::scanRelocs, but
this at least should improve readability. I'm taking an incremental
approach to reduce complexity.
llvm-svn: 258753
There are a few cases where we have almost duplicated code.
This patches fixes the simplest: the finalize and write of dynamic
section. Right now they have to have exactly the same structure to
decide if a DT_* entry is needed and then to actually write it.
We cannot just write it to a std::vector in the first pass since
addresses have not been computed yet.
llvm-svn: 258723
Summary: It looks like this snuck through in r256143/D15383.
Reviewers: ruiu, grimar
Differential Revision: http://reviews.llvm.org/D16500
llvm-svn: 258599
In this code, we avoid calling needsCopyRel in writeTo because
we called that function already in scanRelocs. Making the same
decision twice is a waste and has a risk of a bug that we get
inconsistent resuts.
llvm-svn: 258430
Some MIPS relocation (for now R_MIPS_GOT16) requires creation of GOT
entries for symbol not included in the dynamic symbol table. They are
local symbols and non-local symbols with 'local' visibility. Local GOT
entries occupy continuous block between GOT header and regular GOT
entries.
The patch adds initial support for handling local GOT entries. The main
problem is allocating local GOT entries for local symbols. Such entries
should be initialized by high 16-bit of the symbol value. In ideal world
there should be no duplicated entries with the same values. But at the
moment of the `Writer::scanRelocs` call we do not know a value of the
symbol. In this patch we create new local GOT entry for each relocation
against local symbol, though we can exhaust GOT quickly. That needs to
be optimized later. When we calculate relocation we know a final symbol
value and request local GOT entry index. To do that we maintain map
between addresses and local GOT entry indexes. If we start to calculate
relocations in parallel we will have to serialize access to this map.
Differential Revision: http://reviews.llvm.org/D16324
llvm-svn: 258388
Added check for terminator CIE/FDE which has zero data size.
void EHOutputSection<ELFT>::addSectionAux(
...
// If CIE/FDE data length is zero then Length is 4, this
// shall be considered a terminator and processing shall end.
if (Length == 4)
break;
...
After this "Bug 25923 - lld/ELF2 linked application crashes if exceptions were used." is fixed for me. Self link of clang also works.
Initial commit message:
[ELF] - implemented --eh-frame-hdr command line option.
--eh-frame-hdr
Request creation of ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME" segment header.
Both gold and the GNU linker support an option --eh-frame-hdr which tell them to construct a header for all the .eh_frame sections. This header is placed in a section named .eh_frame_hdr and also in a PT_GNU_EH_FRAME segment. At runtime the unwinder can find all the PT_GNU_EH_FRAME segments by calling dl_iterate_phdr.
This section contains a lookup table for quick binary search of FDEs.
Detailed info can be found here:
http://www.airs.com/blog/archives/462
Differential revision: http://reviews.llvm.org/D15712
llvm-svn: 257889
--eh-frame-hdr
Request creation of ".eh_frame_hdr" section and ELF "PT_GNU_EH_FRAME" segment header.
Both gold and the GNU linker support an option --eh-frame-hdr which tell them to construct a header for all the .eh_frame sections. This header is placed in a section named .eh_frame_hdr and also in a PT_GNU_EH_FRAME segment. At runtime the unwinder can find all the PT_GNU_EH_FRAME segments by calling dl_iterate_phdr.
This section contains a lookup table for quick binary search of FDEs.
Detailed info can be found here:
http://www.airs.com/blog/archives/462
Differential revision: http://reviews.llvm.org/D15712
llvm-svn: 257753
Summary: This will allow us to remove the AMDGPU support from old ELF.
Reviewers: rafael, ruiu
Differential Revision: http://reviews.llvm.org/D15895
llvm-svn: 257023
String tables in unstripped executable files are fairly large in size.
For example, lld's executable file is about 34.4 MB in my environment,
and of which 3.5 MB is the string table. Efficiency of string table
construction matters.
Previously, the string table was built in an inefficient way. We used
StringTableBuilder to build that and enabled string tail merging,
although tail merging is not effective for the symbol table (you can
only make the string table 0.3% smaller for lld.) Tail merging is
computation intensive task and slow.
This patch eliminates string tail merging.
I changed the way of adding strings to the string table in this patch
too. Previously, strings were added using add() and the same strings
were then passed to getOffset() to get their offsets in the string table.
In this way, getOffset() needs to look up a hash table to get offsets
for given strings. This is a violation of "we look up the symbol table
(or a hash table) only once for each symbol" dogma of the new LLD's
design. Hash table lookup for long C++ mangled names is slow.
I eliminated that lookup in this patch.
In total, this patch improves link time of lld itself about 12%
(3.50 seconds -> 3.08 seconds.)
llvm-svn: 257017
MipsReginfoInputSection is basically just a container of Elf_Mips_Reginfo
struct. This patch makes that struct directly accessible from others.
llvm-svn: 256984
Test did not catch this either, so I`ll improve it and recommit later.
Original commit message:
[ELF] - Optimize .eh_frame section: remove CIE if all FDEs referencing it were removed.
This patch performs little optimization for eh_frame section.
If all FDE`s that referenced CIE are removed then CIE is also removed from output.
That can happen for example when dropping FDEs that point to dropped sections. Testcase showing that is included.
The same optimization was added to ld about 14 years ago: https://sourceware.org/ml/binutils/2001-12/msg00144.html, gold does not do that it seems.
Differential revision: http://reviews.llvm.org/D15564
llvm-svn: 256693
This patch performs little optimization for eh_frame section.
If all FDE`s that referenced CIE are removed then CIE is also removed from output.
That can happen for example when dropping FDEs that point to dropped sections. Testcase showing that is included.
The same optimization was added to ld about 14 years ago: https://sourceware.org/ml/binutils/2001-12/msg00144.html, gold does not do that it seems.
Differential revision: http://reviews.llvm.org/D15564
llvm-svn: 256638
OutputSectionBase already has virtual member functions.
This patch makes addSection() a virtual function to remove code
from Writer::createSections().
llvm-svn: 256436
There are 3 symbol types that a .bc can provide during lto: defined,
undefined, common.
Defined and undefined symbols have already been refactored. I was
working on common and noticed that absolute symbols would become an
oddity: They would be the only symbol type present in a .o but not in
a.bc.
Looking a bit more, other than the special section number they were only
used for special rules for computing values. In that way they are
similar to TLS, and we don't have a DefinedTLS.
This patch deletes it. With it we have a reasonable rule of the thumb
for having a symbol kind: It exists if it has special resolution
semantics.
llvm-svn: 256383
I am working on adding LTO support to the new ELF lld.
In order to do that, it will be necessary to represent defined and
undefined symbols that are not from ELF files. One way to do it is to
change the symbol hierarchy to look like
Defined : SymbolBody
Undefined : SymbolBody
DefinedElf<ELFT> : Defined
UndefinedElf<ELFT> : Undefined
Another option would be to use bogus Elf_Sym, but I think that is
getting a bit too hackish.
This patch does the Undefined/UndefinedElf. Split. The next one
will do the Defined/DefinedElf split.
llvm-svn: 256289
This patch changes sequence of applying relocations, moving tls optimized relocation handling code before code for other locals.
Without that change relocation @GOTTPOFF against local symbol caused runtime error ("unrecognized reloc ...").
That change also should fix other tls optimized relocations, but I did not check them, that's a field for another patch.
R_X86_64_GOTTPOFF relocations against locals can be found when linking against libc.a(malloc.o):
000000000036 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
000000000131 000600000016 R_X86_64_GOTTPOFF 0000000000000000 libc_tsd_MALLOC - 4
Differential revision: http://reviews.llvm.org/D15581
llvm-svn: 256145
This relocation is similar to R_*_RELATIVE except that the value used in this relocation is the program address returned by the function, which takes no arguments, at the address of
the result of the corresponding R_*_RELATIVE relocation as specified in the processor-specific ABI. The purpose of this relocation to avoid name lookup for locally defined STT_GNU_IFUNC symbols at load-time.
More info can be found in ifunc.txt from https://sites.google.com/site/x32abi/documents.
Differential revision: http://reviews.llvm.org/D15235
llvm-svn: 256144
R_386_GOTOFF is calculated as S + A - GOT, where:
S - Represents the value of the symbol whose index resides in the relocation entry.
A - Represents the addend used to compute the value of the relocatable field.
GOT - Represents the address of the global offset table.
Differential revision: http://reviews.llvm.org/D15383
llvm-svn: 256143
MIPS .reginfo section provides information on the registers used by
the code in the object file. Linker should collect this information and
write .reginfo section in the output file. This section contains a union
of used registers masks taken from input .reginfo sections and final
value of the `_gp` symbol.
For details see the "Register Information" section in Chapter 4 in the
following document:
ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
The patch implements .reginfo sections handling with a couple missed
features: a) it does not put output .reginfo section into the separate
REGINFO segment; b) it does not merge `ri_cprmask` masks from input
section. These features will be implemented later.
Differential Revision: http://reviews.llvm.org/D15669
llvm-svn: 256119
@indntpoff is similar to @gotntpoff, but for use in position dependent code. While @gotntpoff resolves to GOT slot address relative to the
start of the GOT in the movl or addl instructions, @indntpoff resolves to the
absolute GOT slot address. ("ELF Handling For Thread-Local Storage", Ulrich Drepper).
Differential revision: http://reviews.llvm.org/D15494
llvm-svn: 255884
Previously, OffsetInBSS is -1 if it has no information about copy
relocation, 0 if it needs a copy relocation, and >0 if its offset
in BSS has been assigned. These flags were too subtle. This patch
adds a new flag, NeedsCopy, to carry information about whether
a shared symbol needs a copy relocation or not.
llvm-svn: 255865
[ELF] - refactor of code in RelocationSection<ELFT>::writeTo()
Just a little reformat of 'if' conditions, NFC.
Differential revision: http://reviews.llvm.org/D15453
Fix was:
* Renamed unsigned Rel; to unsigned Reloc;
llvm-svn: 255631
as it broke buildbot:
http://lab.llvm.org:8011/builders/lld-x86_64-darwin13/builds/17836/steps/build_Lld/logs/stdio
/Users/buildslave/as-bldslv9/lld-x86_64-darwin13/llvm.src/tools/lld/ELF/OutputSections.cpp:268:14: error: redefinition of 'Rel'
unsigned Rel; ^
/Users/buildslave/as-bldslv9/lld-x86_64-darwin13/llvm.src/tools/lld/ELF/OutputSections.cpp:241:34: note: previous definition is here
for (const DynamicReloc<ELFT> &Rel : Relocs) {
That compiles fine on my MSVS 2015 thought.
llvm-svn: 255628
"Ulrich Drepper, ELF Handling For Thread-Local Storage" (5.5 x86-x64 linker optimizations, http://www.akkadia.org/drepper/tls.pdf) shows how GD can be optimized to IE.
This patch implements the optimization.
Differential revision: http://reviews.llvm.org/D15000
llvm-svn: 254713
Combination of @tlsgd and @gottpoff at the same time leads to miss of R_X86_64_TPOFF64 dynamic relocation. Patch fixes that.
@tlsgd(%rip) - Allocate two contiguous entries in the GOT to hold a tls index
structure (for passing to tls get addr).
@gottpoff(%rip) - Allocate one GOT entry to hold a variable offset in initial TLS
block (relative to TLS block end, %fs:0).
The same situation can be observed for x86 (probably others too, not sure) with corresponding for that target relocations: @tlsgd, @gotntpoff.
Differential revision: http://reviews.llvm.org/D15105
llvm-svn: 254443
Fix was:
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
=>
uint32_t getLocalTlsIndexVA() { return Base::getVA() + LocalTlsIndexOff; }
Both works for my MSVS.
Original commit message:
[ELF] - Refactor of tls_index implementation for tls local dynamic model.
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254433
It failed buildbot:
http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/builds/3782/steps/build/logs/stdio
Target.cpp
In file included from /home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/Target.cpp:20:
/home/buildbot/Buildbot/Slave/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/llvm.src/tools/lld/ELF/OutputSections.h:136:42: error: use of undeclared identifier 'getVA'
uint32_t getLocalTlsIndexVA() { return getVA() + LocalTlsIndexOff; }
llvm-svn: 254432
Patch contains the next 2 changes:
1) static variable Out<ELFT>::LocalModuleTlsIndexOffset moved to Out<ELFT>::Got. At fact there is no meaning for it to be separated from GOT class because at each place of using it anyways needs to call GOT`s getVA(). Also it is impossible to have that offset and not have GOT.
2) addLocalModuleTlsIndex -> addLocalModelTlsIndex (word "Module" changed to "Model"). Not sure was it a mistype or not but I think that update is closer to Urlich terminology.
Differential revision: http://reviews.llvm.org/D15113
llvm-svn: 254428
Splitted writeTo to separate tls relocs handling stuff which is too long for one method now. NFC.
Differential revision: http://reviews.llvm.org/D15012
llvm-svn: 254309
Patch implements lazy relocations for x86.
One of features of x86 is that executable files and shared object files have separate procedure linkage tables. So patch implements both cases.
Detailed information about instructions used can be found in http://docs.oracle.com/cd/E19620-01/805-3050/chapter6-1235/index.html (search: x86: Procedure Linkage Table).
Differential revision: http://reviews.llvm.org/D14955
llvm-svn: 254098
This patch implements next relocations:
R_386_TLS_LE - Negative offset relative to static TLS (GNU version).
R_386_TLS_LE_32 - Offset relative to static TLS block.
These ones are created when using next code sequences:
* @tpoff - The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.
* @ntpoff Calculate the negative offset of the variable it is added to relative to the static TLS block.
The operator must be used to compute an immediate value. The linker will report
an error if the referenced variable is not defined or it is not code for the executable
itself. No GOT entry is created in this case.
Information was found in Ulrich Drepper, ELF Handling For Thread-Local Storage, http://www.akkadia.org/drepper/tls.pdf, (6.2, p76)
Differential revision: http://reviews.llvm.org/D14930
llvm-svn: 254090
The content of reserved entries of the .got.plt section is target specific.
In particular, on x86_64 the zero entry holds the address of the .dynamic section,
but on AArch64 the same info is stored in the zero entry of the .got section.
Differential revision: http://reviews.llvm.org/D14703
llvm-svn: 253239
The MIPS target requires specific dynamic section entries to be defined.
* DT_MIPS_RLD_VERSION and DT_MIPS_FLAGS store predefined values.
* DT_MIPS_BASE_ADDRESS holds base VA.
* DT_MIPS_LOCAL_GOTNO holds the number of local GOT entries.
* DT_MIPS_SYMTABNO holds the number of .dynsym entries.
* DT_MIPS_GOTSYM holds the index of the .dynsym entry
which corresponds to the first entry of the global part of GOT.
* DT_MIPS_RLD_MAP holds the address of the reserved space in the data segment.
* DT_MIPS_PLTGOT points to the .got.plt section if it exists.
* DT_PLTGOT holds the address of the GOT section.
See "Dynamic Section" in Chapter 5 in the following document for detailed
description: ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
Differential revision: http://reviews.llvm.org/D14450
llvm-svn: 252857
The MIPS ABI has requirements to sort the entries in the .dyn.sym section.
Symbols which are not in the GOT have to precede the symbols which are added to
the GOT. The latter must have the same order as the corresponding GOT entries.
Since these sorting requirements contradict those of the GNU hash section,
they cannot be used together.
Differential revision: http://reviews.llvm.org/D14281
llvm-svn: 252854
This adds support for:
* Uniquing CIEs
* Dropping FDEs that point to dropped sections
It drops 657 488 bytes from the .eh_frame of a Release+Asserts clang.
The link time impact is smallish. Linking clang with a Release+Asserts
lld goes from 0.488064805 seconds to 0.504763060 seconds (1.034 X slower).
llvm-svn: 252790