Summary:
This commit renames GCRelocateOperands to GCRelocateInst and makes it an
intrinsic wrapper, similar to e.g. MemCpyInst. Also, all users of
GCRelocateOperands were changed to use the new intrinsic wrapper instead.
Reviewers: sanjoy, reames
Subscribers: reames, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D15762
llvm-svn: 256811
time.
The new overloaded function is used when an attribute is added to a
large number of slots of an AttributeSet (for example, to function
parameters). This is much faster than calling AttributeSet::addAttribute
once per slot, because AttributeSet::getImpl (which calls
FoldingSet::FIndNodeOrInsertPos) is called only once per function
instead of once per slot.
With this commit, clang compiles a file which used to take over 22
minutes in just 13 seconds.
rdar://problem/23581000
Differential Revision: http://reviews.llvm.org/D15085
llvm-svn: 254491
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
There are plenty more instcombines we could probably do with bitreverse, but this seems like a very obvious and trivial starting point and was brought up by Hal in his review.
llvm-svn: 252879
This patch improves support for combining the SSE4A EXTRQ(I) and INSERTQ(I) intrinsics:
1 - Converts INSERTQ/EXTRQ calls to INSERTQI/EXTRQI if the 'bit index' and 'length' operands are constant
2 - Converts INSERTQI/EXTRQI calls to shufflevector if the bit index/length are both byte aligned (we can already lower shuffles to INSERTQI/EXTRQI if its useful)
3 - Constant folding support
4 - Add zeroinitializer handling
Differential Revision: http://reviews.llvm.org/D13348
llvm-svn: 250609
As discussed in D13348 - the INSERTQI range combining code is wrong in that it confuses the insertion bit index with an extraction bit index.
The remaining legal combines are very unlikely (especially once we've converted to shuffles in D13348) so I'm removing the optimization.
llvm-svn: 250160
Summary:
Some passes may open up opportunities for optimizations, leaving empty
lifetime start/end ranges. For example, with the following code:
void foo(char *, char *);
void bar(int Size, bool flag) {
for (int i = 0; i < Size; ++i) {
char text[1];
char buff[1];
if (flag)
foo(text, buff); // BBFoo
}
}
the loop unswitch pass will create 2 versions of the loop, one with
flag==true, and the other one with flag==false, but always leaving
the BBFoo basic block, with lifetime ranges covering the scope of the for
loop. Simplify CFG will then remove BBFoo in the case where flag==false,
but will leave the lifetime markers.
This patch teaches InstCombine to remove trivially empty lifetime marker
ranges, that is ranges ending right after they were started (ignoring
debug info or other lifetime markers in the range).
This fixes PR24598: excessive compile time after r234581.
Reviewers: reames, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13305
llvm-svn: 249018
This patch teaches InstCombiner how to convert a SSSE3/AVX2 byte shuffle to a
builtin shuffle if the mask is constant.
Converting byte shuffle intrinsic calls to builtin shuffles can help finding
more opportunities for combining shuffles later on in selection dag.
We may end up with byte shuffles with constant masks as the result of inlining.
Differential Revision: http://reviews.llvm.org/D13252
llvm-svn: 248913
This patches removes the x86.sse41.pmovsx* intrinsics, provides a suitable upgrade path and updates relevant tests to sign extend a subvector instead.
LLVM counterpart to D12835
Differential Revision: http://reviews.llvm.org/D13002
llvm-svn: 248368
The SSE4A instructions EXTRQ/INSERTQ only use the lower 64-bits (or less) for many of their input vector operands and all of them have undefined upper 64-bits results.
Differential Revision: http://reviews.llvm.org/D12680
llvm-svn: 247934
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of passing arguments at callsite. In this way it can handle cases where the argument does not have nonnull attribute but has a dominating null check from the CFG. It also adds assertions in isKnownNonNull() and isKnownNonNullFromDominatingCondition() to make sure the value checked is pointer type (as defined in LLVM document). These assertions might trip failures in things which are not covered under llvm/test, but fixes should be pretty obvious.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12779
llvm-svn: 247587
Improved InstCombine support for CVTPH2PS (F16C half 2 float conversion):
<4 x float> @llvm.x86.vcvtph2ps.128(<8 x i16>) - only uses the bottom 4 i16 elements for the conversion.
Added constant folding support.
Differential Revision: http://reviews.llvm.org/D12731
llvm-svn: 247504
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of passing arguments at callsite. In this way it can handle cases where the argument does not have nonnull attribute but has a dominating null check from the CFG.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12779
llvm-svn: 247356
Summary: This patch replaces isKnownNonNull() with isKnownNonNullAt() when checking nullness of gc.relocate return value. In this way it can handle cases where the relocated value does not have nonnull attribute but has a dominating null check from the CFG.
Reviewers: reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D12772
llvm-svn: 247353
Most SSE/AVX (non-constant) vector shift instructions only use the lower 64-bits of the 128-bit shift amount vector operand, this patch calls SimplifyDemandedVectorElts to optimize for this.
I had to refactor some of my recent InstCombiner work on the vector shifts to avoid quite a bit of duplicate code, it means that SimplifyX86immshift now (re)decodes the type of shift.
Differential Revision: http://reviews.llvm.org/D11938
llvm-svn: 244872
As discussed in D11886, this patch moves the SSE/AVX vector blend folding to instcombiner from PerformINTRINSIC_WO_CHAINCombine (which allows us to remove this completely).
InstCombiner already had partial support for this, I just had to add support for zero (ConstantAggregateZero) masks and also the case where both selection inputs were the same (allowing us to ignore the mask).
I also moved all the relevant combine tests into InstCombine/blend_x86.ll
Differential Revision: http://reviews.llvm.org/D11934
llvm-svn: 244723
As discussed in D11760, this patch moves the (V)PSRA(WD) arithmetic shift-by-constant folding to InstCombine to match the logical shift implementations.
Differential Revision: http://reviews.llvm.org/D11886
llvm-svn: 244495
This patch fixes the sse2/avx2 vector shift by constant instcombine call to correctly deal with the fact that the shift amount is formed from the entire lower 64-bit and not just the lowest element as it currently assumes.
e.g.
%1 = tail call <4 x i32> @llvm.x86.sse2.psrl.d(<4 x i32> %v, <4 x i32> <i32 15, i32 15, i32 15, i32 15>)
In this case, (V)PSRLD doesn't perform a lshr by 15 but in fact attempts to shift by 64424509455 ((15 << 32) | 15) - giving a zero result.
In addition, this review also recognizes shift-by-zero from a ConstantAggregateZero type (PR23821).
Differential Revision: http://reviews.llvm.org/D11760
llvm-svn: 244341
Now that we are generating sane codegen for vector sext/zext nodes on SSE targets, this patch uses instcombine to replace the SSE41/AVX2 pmovsx and pmovzx intrinsics with the equivalent native IR code.
Differential Revision: http://reviews.llvm.org/D11503
llvm-svn: 243303
The original change broke clang side tests. I will be submitting those momentarily. This change includes post commit feedback on the original change from from Pete Cooper.
Original Submission comments:
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239849
If a parameter to a function is known non-null, use the existing parameter attributes to record that fact at the call site. This has no optimization benefit by itself - that I know of - but is an enabling change for http://reviews.llvm.org/D9129.
Differential Revision: http://reviews.llvm.org/D9132
llvm-svn: 239795
This change does a few things:
- Move some InstCombine transforms to InstSimplify
- Run SimplifyCall from within InstCombine::visitCallInst
- Teach InstSimplify to fold [us]mul_with_overflow(X, undef) to 0.
llvm-svn: 237995
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
The QPX single-precision load/store intrinsics have implied
truncation/extension from/to the declared value type of <4 x double> to the
memory type of <4 x float>. When we can prove the alignment of the pointer
argument, and thus replace the intrinsic with a regular load or store, we need
to load or store the correct data type (<4 x float>) instead of (<4 x double>).
llvm-svn: 236973
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
llvm-svn: 236668
This is a follow-on to D8833 (insertps optimization when the zero mask is not used).
In this patch, we check for the case where the zmask is used, but both input vectors
to the insertps intrinsic are the same operand or the zmask overrides the destination
lane. This lets us replace the 2nd shuffle input operand with the zero vector.
Differential Revision: http://reviews.llvm.org/D9257
llvm-svn: 235810
Move isDereferenceablePointer function to Analysis. This function recursively tracks dereferencability over a chain of values like other functions in ValueTracking.
This refactoring is motivated by further changes to support dereferenceable_or_null attribute (http://reviews.llvm.org/D8650). isDereferenceablePointer will be extended to perform context-sensitive analysis and IR is not a good place to have such functionality.
Patch by: Artur Pilipenko <apilipenko@azulsystems.com>
Differential Revision: reviews.llvm.org/D9075
llvm-svn: 235611
This is very similar to D8486 / r232852 (vperm2). If we treat insertps intrinsics
as shufflevectors, we can optimize them better.
I've left all but the full zero case of the zero mask variants out of this patch.
I don't think those can be converted into a single shuffle in all cases, but I'd
be happy to be proven wrong as I was for vperm2f128.
Either way, we'd need to support whatever sequence we come up with for those cases
in the backend before converting them here.
Differential Revision: http://reviews.llvm.org/D8833
llvm-svn: 235124