The last resort pattern produces 6 instructions, and there are still
opportunities for materializing some immediates in fewer instructions.
llvm-svn: 178526
SPARC v9 defines new 64-bit shift instructions. The 32-bit shift right
instructions are still usable as zero and sign extensions.
This adds new F3_Sr and F3_Si instruction formats that probably should
be used for the 32-bit shifts as well. They don't really encode an
simm13 field.
llvm-svn: 178525
The 'sparc' architecture produces 32-bit code while 'sparcv9' produces
64-bit code.
It is also possible to run 32-bit code using SPARC v9 instructions with:
llc -march=sparc -mattr=+v9
llvm-svn: 178524
This is far from complete, but it is enough to make it possible to write
test cases using i64 arguments.
Missing features:
- Floating point arguments.
- Receiving arguments on the stack.
- Calls.
llvm-svn: 178523
We are going to use the same registers for 32-bit and 64-bit values, but
in two different register classes. The I64Regs register class has a
larger spill size and alignment.
The addition of an i64 register class confuses TableGen's type
inference, so it is necessary to clarify the type of some immediates and
the G0 register.
In 64-bit mode, pointers are i64 and should use the I64Regs register
class. Implement getPointerRegClass() to dynamically provide the pointer
register class depending on the subtarget. Use ptr_rc and iPTR for
memory operands.
Finally, add the i64 type to the IntRegs register class. This register
class is not used to hold i64 values, I64Regs is for that. The type is
required to appease TableGen's type checking in output patterns like this:
def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
SPARC v9 uses the same ADDrr instruction for i32 and i64 additions, and
TableGen doesn't know to check the type of register sub-classes.
llvm-svn: 178522
variable in a C99 inline (but not static-inline or extern-inline)
function definition.
The standard doesn't actually say that this doesn't apply to
"extern inline" definitions, but that seems like a useful extension,
and it at least doesn't have the obvious flaw that a static
mutable variable in an externally-available definition does.
rdar://13535367
llvm-svn: 178520
Buffered means a later divide may be executed out-of-order while a
prior divide is sitting (buffered) in a reservation station.
You can tell it's not pipelined, because operations that use it
reserve it for more than one cycle:
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
let Latency = 25;
let ResourceCycles = [1, 10];
}
We don't currently distinguish between an unpipeline operation and one
that is split into multiple micro-ops requiring the same unit. Except
that the later may have NumMicroOps > 1 if they also consume
issue/dispatch resources.
llvm-svn: 178519
Refactor invalidateRegions to take SVals instead of Regions as input and teach RegionStore
about processing LazyCompoundVal as a top-level “escaping” value.
This addresses several false positives that get triggered by the NewDelete checker, but the
underlying issue is reproducible with other checkers as well (for example, MallocChecker).
llvm-svn: 178518
This is a heuristic to make up for the fact that the analyzer doesn't
model C++ containers very well. One example is modeling that
'std::distance(I, E) == 0' implies 'I == E'. In the future, it would be
nice to model this explicitly, but for now it just results in a lot of
false positives.
The actual heuristic checks if the base type has a member named 'begin' or
'iterator'. If so, we treat the constructors and destructors of that type
as opaque, rather than inlining them.
This is intended to drastically reduce the number of false positives
reported with experimental destructor support turned on. We can tweak the
heuristic in the future, but we'd rather err on the side of false negatives
for now.
<rdar://problem/13497258>
llvm-svn: 178516
Certain properties of a function can determine ahead of time whether or not
the function is inlineable, such as its kind, its signature, or its
location. We can cache this value in the FunctionSummaries map to avoid
rechecking these static properties for every call.
Note that the analyzer may still decide not to inline a specific call to
a function because of the particular dynamic properties of the call along
the current path.
No intended functionality change.
llvm-svn: 178515
The summaries lasted for the lifetime of the map anyway; no reason to
include an extra allocation.
Also, use SmallBitVector instead of BitVector to track the visited basic
blocks -- most functions will have less than 64 basic blocks -- and
use bitfields for the other fields to reduce the size of the structure.
No functionality change.
llvm-svn: 178514
This is controlled by the 'suppress-c++-stdlib' analyzer-config flag.
It is currently off by default.
This is more suppression than we'd like to do, since obviously there can
be user-caused issues within 'std', but it gives us the option to wield
a large hammer to suppress false positives the user likely can't work
around.
llvm-svn: 178513
Note: although it is now possible to declare blocks
and call them inside the same expression, we do not
generate correct block descriptors so these blocks
cannot be passed to functions like dispatch_async.
<rdar://problem/12578656>
llvm-svn: 178509
Revision 177141 caused a regression in all but
mips64 little endian. That is because none of the
other Mips targets had test cases checking the
contents of the .eh_frame section. This patch fixes
both the llvm code and adds an assembler test case
to include the current 4 flavors.
The test cases unfortunately rely on llvm-objdump. A
preferable method would be to use a pretty printer output
such as what readelf -wf <elf_file> would give.
I also changed the name of the test case to correct a typo.
llvm-svn: 178506
Previously UseNullptr matched separately implicit and explicit casts to nullptr,
now it matches casts that either are implict casts to nullptr or have an
implicit cast to nullptr within.
Also fixes PR15572 since the same macro replacement logic is applied to implicit
and explicit casts.
llvm-svn: 178494
- process in 'unloaded' state was (incorrectly) considered to be alive by POSIX plugin
- above caused a regression in TestProcessLaunch cases
llvm-svn: 178493
- Check that process attach succeeded before attempting to WaitForProcessToStop (observed to cause hangs on Linux)
- Update comment in TestHelloWorld case -- attaching by name still broken
llvm-svn: 178491
when we actually end a lexical block.
* Added new test for line table / block cleanup.
* Follow-up to r177819 / rdar://problem/13115369
llvm-svn: 178490
visible. There's a lot of potential badness in how we're modelling
these things, but getting this much correct is reasonably easy.
rdar://13535367
llvm-svn: 178488
Loop convert's variable name aliasing may cause issues if the variable is
declared as a value (copy). The converted loop will declare the variable as a
reference which may inadvertently cause modifications to the container if it
were used and modified as a temporary copy.
This is fixed by preserving the reference or value qualifiers of the aliased
variable. That is, if the variable was declared as a value the loop variable
will also be declared as a value and similarly for references.
Fixes: PR15600
Author: Jack Yang <jack.yang@intel.com>
llvm-svn: 178485
We would also like to merge sequences that involve a variable index like in the
example below.
int index = *idx++
int i0 = c[index+0];
int i1 = c[index+1];
b[0] = i0;
b[1] = i1;
By extending the parsing of the base pointer to handle dags that contain a
base, index, and offset we can handle examples like the one above.
The dag for the code above will look something like:
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i8 load %index))))
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
The code that parses the tree ignores the intermediate sign extensions. However,
if there is a sign extension it needs to be on all indexes.
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (add (i8 load %index)
(i8 1))))
vs
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
radar://13536387
llvm-svn: 178483
To hook it up to individual test cases:
- define GetLongOptions() in your test case class to return something other than NULL (hopefully an array of options :-)
- implement ParseOption() to check for the short option char and do the right thing - return true at the end if you want more options to come your way or false if you don’t
- make sure that your Setup() call takes int& and char**& so that optind post-processing can happen - and call TestCase::Setup from your setup
llvm-svn: 178482
The P7 and A2 have additional floating-point conversion instructions which
allow a direct two-instruction sequence (plus load/store) to convert from all
combinations (signed/unsigned i32/i64) <--> (float/double) (on previous cores,
only some combinations were directly available).
llvm-svn: 178480