Arm code has two instruction encodings "thumb" and "arm". When branching from
one code encoding to another, you need to use an instruction that switches
the instruction mode. Usually the transition only happens at call sites, and
the linker can transform a BL instruction in BLX (or vice versa). But if the
compiler did a tail call optimization and a function ends with a branch (not
branch and link), there is no pc-rel BX instruction.
The ShimPass looks for pc-rel B instructions that will need to switch mode.
For those cases it synthesizes a shim which does the transition, then modifies
the original atom with the B instruction to target to the shim atom.
llvm-svn: 219655
When committed in r219353, this patch originally caused problems because it was
not tested in debug build. In such scenarios, Driver.cpp adds two additional
passes. These passes serialize all atoms via YAML and reads it back. Since the
patch changed ObjectAtom to hold a new reference, the serialization was removing
the extra data.
This commit implements r219853 in another way, similar to the original MIPS way,
by using a StringSet that holds the names of all copied atoms instead of
directly holding a reference to the copied atom. In this way, this commit is
simpler and eliminate the necessity of changing the DefinedAtom hierarchy to
hold a new data.
Reviewers: shankarke
http://reviews.llvm.org/D5713
llvm-svn: 219449
Enhances the creation of an ELF dynamic executable by avoiding recording
unnecessary shared libraries as NEEDED to load a program.
To do this, we must keep track of not only symbols that were referenced but
also of COPY relocations, which steal the symbol from a shared library but does
not store from which lib this symbol came from. To fix this, this commit changes
ObjectSymbol to store the original library from which this symbol came. With
this information, we are able to build a list of the exact shared libraries that
must be marked as DT_NEEDED, instead of blindly marking all shared libraries as
needed.
This logic originally came from the MIPS backend with some adaptation.
Reviewers: atanasyan, shankar.easwaran
http://reviews.llvm.org/D5574
llvm-svn: 219353
When creating a dynamic executable and receiving the -E flag, the linker should
export all globally visible symbols in its dynamic symbol table.
This commit also moves the logic that exports symbols in the dynamic symbol
table from OutputELFWriter to the ExecutableWriter class. It is not correct to
leave this at OutputELFWriter because DynamicLibraryWriter, another subclass of
OutputELFWriter, already exports all symbols, meaning we can potentially end up
with duplicated symbols in the dynamic symbol table when creating shared libs.
Reviewers: shankarke
http://reviews.llvm.org/D5585
llvm-svn: 219334
Summary: Add support in the universal driver to print the lld version and the
repository version.
Test Plan: A driver test is added
Reviewers: kledzik, ruiu
Reviewed By: ruiu
Subscribers: llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D5641
llvm-svn: 219277
mach-o supports "fat" files which are a header/table-of-contents followed by a
concatenation of mach-o files (or archives of mach-o files) built for
different architectures. Previously, the support for fat files was in the
MachOReader, but that only supported fat .o files and dylibs (not archives).
The fix is to put the fat handing into MachOFileNode. That way any input file
kind (including archives) can be fat. MachOFileNode selects the sub-range
of the fat file that matches the arch being linked and creates a MemoryBuffer
for just that subrange.
llvm-svn: 219268
Previously, we would not check the target machine type and the module (object)
machine type. Add a check to ensure that we do not attempt to use an object
file with a different target architecture.
This change identified a couple of tests which were incorrectly mixing up
architecture types, using x86 input for a x64 target. Adjust the tests
appropriately. The renaming of the input and the architectures covers the
changes to the existing tests.
One significant change to the existing tests is that the newly added test input
for x64 uses the correct user label prefix for X64.
llvm-svn: 219093
This option is added by Xcode when it runs the linker. It produces a binary
file which contains the file the linker used. Xcode uses the info to
dynamically update it dependency tracking.
To check the content of the binary file, the test case uses a python script
to dump the binary file as text which FileCheck can check.
llvm-svn: 219039
No functionality change. This removes a down-cast from LinkingContext to
MachOLinkingContext.
Also, remove const from LinkingContext::createImplicitFiles() to remove
the need for another const cast. Seems reasonable for createImplicitFiles()
to need to modify the context (MachOLinkingContext does).
llvm-svn: 218796
The darwin linker has the -demangle option which directs it to demangle C++
(and soon Swift) mangled symbol names. Long term we need some Diagnostics object
for formatting errors and warnings. But for now we have the Core linker just
writing messages to llvm::errs(). So, to enable demangling, I changed the
Resolver to call a LinkingContext method on the symbol name.
To make this more interesting, the demangling code is done via __cxa_demangle()
which is part of the C++ ABI, which is only supported on some platforms, so I
had to conditionalize the code with the config generated HAVE_CXXABI_H.
llvm-svn: 218718
This is a minimally useful pass to construct the __unwind_info section in a
final object from the various __compact_unwind inputs. Currently it doesn't
produce any compressed pages, only works for x86_64 and will fail if any
function ends up without __compact_unwind.
rdar://problem/18208653
llvm-svn: 218703
Summary:
This patch adds support for the general dynamic TLS access model for X86_64 (see www.akkadia.org/drepper/tls.pdf).
To properly support TLS, the patch also changes the __tls_get_addr atom to be a shared library atom instead of a regularly defined atom (the previous lld approach). This closely models the reality of a function that will be resolved at runtime by the dynamic linker and loader itself (ld.so). I was tempted to force LLD to link against ld.so itself to resolve these symbols, but since GNU ld does not need the ld.so library to resolve this symbol, I decided to mimic its behavior and keep hardwired a definition of __tls_get_addr in the lld code.
This patch also moves some important logic that previously was only available to the MIPS lld backend to be used to all ELF backends. This logic, which now lives in the DefaultLayout class, will monitor which external (shared lib) symbols are really imported by the current module and will only populate the dynamic symbol table with used symbols, as opposed to the previous approach of dumping all shared lib symbols in the dynamic symbol table. This is important to this patch to avoid __tls_get_addr from getting injected into all dynamic symbol tables.
By solving the previous problem of always adding __tls_get_addr, now the produced symbol tables are slightly smaller. But this impacted several tests that relied on hardwired/predefined sizes of the symbol table, requiring this patch to update such tests.
Test Plan: Added a LIT test case that exercises a simple use case of TLS variable in a shared library.
Reviewers: ruiu, rafael, Bigcheese, shankarke
Reviewed By: Bigcheese, shankarke
Subscribers: emaste, shankarke, joerg, kledzik, mcrosier, llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D5505
llvm-svn: 218633
This patch changes the type of export table set from std::set to
std::vector. The new code is slightly inefficient, but because
export table elements are actually mutable, std::vector is better
here. No functionality change.
llvm-svn: 218343
A symbol in a module definition file may be annotated with the
PRIVATE keyword like this.
EXPORTS
func PRIVATE
The PRIVATE keyword does not affect the resulting .dll file.
But it prevents the symbol to be listed in the .lib (import
library) file.
llvm-svn: 218273
Patch from Rafael Auler!
When a shared lib has an undefined symbol that is defined in a regular object
(the program), the final executable must export this symbol in the dynamic
symbol table. However, in the current logic, lld only puts the symbol in the
dynamic symbol table if the symbol is weak. This patch fixes lld to put the
symbol in the dynamic symbol table regardless if it is weak or not.
This caused a problem in FreeBSD10, whose programs link against a crt1.o
that defines the symbol __progname, which is, in turn, undefined in libc.so.7
and will only be resolved in runtime.
http://reviews.llvm.org/D5424
llvm-svn: 218259
Most of the changes are in the new file ArchHandler_arm64.cpp. But a few
things had to be fixed to support 16KB pages (instead of 4KB) which iOS arm64
requires. In addition the StubInfo struct had to be expanded because
arm64 uses two instruction (ADRP/LDR) to load a global which requires two
relocations. The other mach-o arches just needed one relocation.
llvm-svn: 217469
There is a bit (MH_PIE) in the flags field of the mach_header which tells
the kernel is a program was built position independent (for ASLR). The linker
automatically attempts to build programs PIE if they are built for a recent
OS version. But the -pie and -no_pie options override that default behavior.
llvm-svn: 217408
defined in a shared library.
Now LLD does not export a strong defined symbol if it coalesces away a
weak symbol defined in a shared library. This bug affects all ELF
architectures and leads to segfault:
% cat foo.c
extern int __attribute__((weak)) flag;
int foo() { return flag; }
% cat main.c
int flag = 1;
int foo();
int main() { return foo() == 1 ? 0 : -1; }
% clang -c -fPIC foo.c main.c
% lld -flavor gnu -target x86_64 -shared -o libfoo.so ... foo.o
% lld -flavor gnu -target x86_64 -o a.out ... main.o libfoo.so
% ./a.out
Segmentation fault
The problem is caused by the fact that we lose all information about
coalesced symbols after the `Resolver::resolve()` method is finished.
The patch solves the problem by overriding the
`LinkingContext::notifySymbolTableCoalesce()` method and saving names
of coalesced symbols. Later in the `buildDynamicSymbolTable()` routine
we use this information to export these symbols.
llvm-svn: 217363
By default linker would not create a separate segment to hold read only data.
This option overrides that behavior by creating the a separate read only segment
for read only data.
llvm-svn: 217358
Mach-O has a "fat" (or "universal") variant where the same contents built for
different architectures are concatenated into one file with a table-of-contents
header at the start. But this leaves a dilemma for the linker - which
architecture to use.
Normally, the linker command line -arch is used to force which slice of any fat
files are used. The clang compiler always passes -arch to the linker when
invoking it. But some Makefiles invoke the linker directly and don’t specify
the -arch option. For those cases, the linker scans all input files in command
line order and finds the first non-fat object file. Whatever architecture it
is becomes the architecture for the link.
llvm-svn: 217189
The implementation of AMD64 relocations was imcomplete
and wrong. On AMD64, we of course have to use AMD64
relocations instead of i386 ones. This patch fixes the
issue.
LLD is now able to link hello64.obj (created from
hello64.asm) against user32.lib and kernel32.lib to
create a Win64 binary.
llvm-svn: 216253
Both options control the final scope of atoms.
When -exported_symbols_list <file> is used, the file is parsed into one
symbol per line in the file. Only those symbols will be exported (global)
in the final linked image.
The -keep_private_externs option is only used with -r mode. Normally, -r
mode reduces private extern (scopeLinkageUnit) symbols to non-external. But
add the -keep_private_externs option keeps them private external.
llvm-svn: 216146
This is the one interesting aspect from:
http://reviews.llvm.org/D4965
These hooks are useful for flavor specific processing, such as recording that
a DefinedAtom replaced a weak SharedLibraryAtom.
llvm-svn: 216122
The darwin linker has an option, heavily used by Xcode, in which, instead
of listing all input files on the command line, the input file paths are
written to a text file and the path of that text file is passed to the linker
with the -filelist option (similar to @file).
In order to make test cases for this, I generalized the -test_libresolution
option to become -test_file_usage.
llvm-svn: 215762
Darwin has a packaging mechanism for shared libraries and headers called
frameworks. A directory Foo.framework contains a shared library binary file
"Foo" and a subdirectory "Headers". Most OS frameworks are all in one
directory /System/Library/Frameworks/. As a linking convenience, the linker
option "-framework Foo" means search the framework directories specified
with -F (analogous to -L) looking for a shared library Foo.framework/Foo.
llvm-svn: 215680
In general two-level namespace means each program records exactly which dylib
each undefined (imported) symbol comes from. But, sometimes the implementor
wants to hide the implementation dylib. For instance libSytem.dylib is the base
dylib all Darwin programs must link with. A few years ago it was split up
into two dozen dylibs by all are hidden behind libSystem.dylib which re-exports
each sub-dylib. All clients still think libSystem.dylib is the implementor.
To support this, the linker must load "indirect" dylibs and not just the
"direct" dylibs specified on the command line. This is done in the
createImplicitFiles() method after all command line specified files are
loaded. Since an indirect dylib may have already been loaded as a direct dylib
(or indirectly via a previous direct dylib), the MachOLinkingContext keeps
a list of all loaded dylibs.
With this change hello world can now be linked against the real OS or SDK.
llvm-svn: 215605
This patch adds the initial ELF/AArch64 support to lld. Only a basic "Hello
World" app has been successfully tested for both dynamic and static compiling.
Differential Revision: http://reviews.llvm.org/D4778
Patch by Daniel Stewart <stewartd@codeaurora.org>!
llvm-svn: 215544
/INCLUDE arguments passed as command line options are handled in the
same way as Unix -u. All option values are converted to an undefined
symbol and added to a dummy input file, so that the specified symbols
are resolved.
One tricky thing on Windows is that the option is also allowed to
appear in the object file's directive section. At the time when
it's being read, all (regular) command line options have already
been processed. We cannot add undefined atoms to the dummy file
anymore.
Previously, we added such /INCLUDE to a set that has already been
processed. As a result the options were ignored.
This patch fixes the issue. Now, /INCLUDE symbols in the directive
section are handled as real undefined symbol in the COFF file.
We create an undefined symbol for each /INCLUDE argument and add
it to the file being parsed.
llvm-svn: 214824
The -sectalign option is used to increase the alignment required for a section.
It required some reworking of how the __TEXT segment is laid out because that
segment also contains the mach_header and load commands. And the size of load
commands depend on the number of segments, sections, and dependent dylibs used.
Using this option will simplify some future test cases because the final
address of code can be pinned down, making tests of its content easier.
llvm-svn: 214268
insertElementAt(x, END) does the identical thing as addInputElement(x),
so the only reasonable use of insertElementAt is to call it with the
other possible argument, BEGIN. That means the second parameter of the
function is just redundant. This patch is to remove the second
parameter and rename the function accordingly.
llvm-svn: 213821
The entry point file needs to be processed after all other
object files and before all .lib files. It was processed
after .lib files. That caused an issue that the entry point
function was not resolved from the standard library files.
llvm-svn: 213804
On Windows there are four "main" functions -- main, wmain, WinMain,
or wWinMain. Their parameter types are diffferent. The standard
library provides four different entry functions (i.e.
{w,}{WinMain,main}CRTStartup) for them. You need to use the right
entry routine for your "main" function.
If you give an /entry option, the specified name is used
unconditionally.
Otherwise, the linker needs to select the right one based on
user-supplied entry point function. This can be done after the
linker reads all the input files.
This patch moves the code to determine the entry point function
from the driver to a virtual input file. It also implements the
correct logic for the entry point function selection.
llvm-svn: 213713
This is a part of a larger change to move the entry point
processing to a later pass than the driver. On Windows the default
entry point function varies depending on user-provided functions.
That means the driver is not able to correctly know the entry point
function name. Only passes after the core linker can infer it.
llvm-svn: 213697
All architecture specific handling is now done in the appropriate
ArchHandler subclass.
The StubsPass and GOTPass have been simplified. All architecture specific
variations in stubs are now encoded in a table which is vended by the
current ArchHandler.
llvm-svn: 213187
There are two forms of `-l` prefixed expression:
* -l<libname>
* -l:<filename>
In the first case a linker should construct a full library name
`lib + libname + .[so|a]` and search this library as usual. In the second case
a linker should use the `<filename>` as is and search this file through library
search directories.
The patch reviewed by Shankar Easwaran.
llvm-svn: 213077
Previously we invoked cvtres.exe for each compiled Windows
resource file. The generated files were then concatenated
and embedded to the executable.
That was not the correct way to merge compiled Windows
resource files. If you just concatenate generated files,
only the first file would be recognized and the rest would
be ignored as trailing garbage.
The right way to merge them is to call cvtres.exe with
multiple input files. In this patch we do that in the
Windows driver.
llvm-svn: 212763
These behave slightly idiosyncratically in the best of cases, and have
additional hacks layered on top of that for compatibility with badly behaved
build systems (via ld64).
For -lXYZ:
+ If XYZ is actually XY.o then search all library paths for XY.o
+ Otherwise search all library paths, first for libXYZ.dylib, then libXYZ.a
+ By default the library paths are /usr/lib and /usr/local/lib in that order.
For -syslibroot:
+ -syslibroot options apply to absolute paths in the search order.
+ All -syslibroot prefixes that exist are added to the search path *instead*
of the original.
+ If no -syslibroot prefixed path exists, the original is kept.
+ Hacks^WExceptions:
+ If only 1 -syslibroot is given and doesn't contain /usr/lib or
/usr/local/lib, that path is dropped entirely. (rdar://problem/6438270).
+ If the last -syslibroot is "/", all of them are ignored entirely.
(rdar://problem/5829579).
At least, that's my best interpretation of what ld64 does in buildSearchPaths.
llvm-svn: 212706