This makes the generated doc easier to read and it is also
more friendly to certain markdown parsers like kramdown.
Fixestensorflow/mlir#221
PiperOrigin-RevId: 278643469
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.
This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:
* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
all bits unset (i.e., zero). If so handle it specially in all
helper methods.
PiperOrigin-RevId: 277964926
Previously DRR assumes attributes to appear after operands. This was the
previous requirements on ODS, but that has changed some time ago. Fix
DRR to also support interleaved operands and attributes.
PiperOrigin-RevId: 275983485
Otherwise, we'll see the following warning when compiling with GCC 8:
warning: this ?for? clause does not guard... [-Wmisleading-indentation]
PiperOrigin-RevId: 275735925
NativeCodeCall is handled differently than normal op creation in RewriterGen
(because its flexibility). It will only be materialized to output stream if
it is used. But when using it for auxiliary patterns, we still want the side
effect even if it is not replacing matched root op's results.
PiperOrigin-RevId: 275265467
It's usually hard to understand what went wrong if mlir-tblgen
crashes on some input. This CL adds a few useful LLVM_DEBUG
statements so that we can use mlir-tblegn -debug to figure
out the culprit for a crash.
PiperOrigin-RevId: 275253532
Add a pass to decorate the composite types used by
composite objects in the StorageBuffer, PhysicalStorageBuffer,
Uniform, and PushConstant storage classes with layout information.
Closestensorflow/mlir#156
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/156 from denis0x0D:sandbox/layout_info_decoration 7c50840fd38ca169a2da7ce9886b52b50c868b84
PiperOrigin-RevId: 273634140
MLIR uses symbol references to model references to many global entities, such as functions/variables/etc. Before this change, there is no way to actually reason about the uses of such entities. This change provides a walker for symbol references(via SymbolTable::walkSymbolUses), as well as 'use_empty' support(via SymbolTable::symbol_use_empty). It also resolves some deficiencies in the LangRef definition of SymbolRefAttr, namely the restrictions on where a SymbolRefAttr can be stored, ArrayAttr and DictionaryAttr, and the relationship with operations containing the SymbolTable trait.
PiperOrigin-RevId: 273549331
Originally, we were attaching attributes containing CUBIN blobs to the kernel
function called by `gpu.launch_func`. This kernel is now contained in a nested
module that is used as a compilation unit. Attach compiled CUBIN blobs to the
module rather than to the function since we were compiling the module. This
also avoids duplication of the attribute on multiple kernels within the same
module.
PiperOrigin-RevId: 273497303
Now that the accessor function is a trivial getter of the global variable, it
makes less sense to have the getter generation as a separate pass. Move the
getter generation into the lowering of `gpu.launch_func` to CUDA calls. This
change is mostly code motion, but the process can be simplified further by
generating the addressof inplace instead of using a call. This is will be done
in a follow-up.
PiperOrigin-RevId: 273492517
Add new `typeDescription` (description was already used by base constraint class) field to type to allow writing longer descriptions about a type being defined. This allows for providing additional information/rationale for a defined type. This currently uses `description` as the heading/name for the type in the generated documentation.
PiperOrigin-RevId: 273299332
This makes the name of the conversion pass more consistent with the naming
scheme, since it actually converts from the Loop dialect to the Standard
dialect rather than working with arbitrary control flow operations.
PiperOrigin-RevId: 272612112
This is a follow-up to the PRtensorflow/mlir#146 which introduced the ROCDL Dialect. This PR introduces a pass to lower GPU Dialect to the ROCDL Dialect. As with the previous PR, this one builds on the work done by @whchung, and addresses most of the review comments in the original PR.
Closestensorflow/mlir#154
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/154 from deven-amd:deven-lower-gpu-to-rocdl 809893e08236da5ab6a38e3459692fa04247773d
PiperOrigin-RevId: 272390729
Add DeclareOpInterfaceFunctions to enable specifying whether OpInterfaceMethods
for an OpInterface should be generated automatically. This avoids needing to
declare the extra methods, while also allowing adding function declaration by way of trait/inheritance.
Most of this change is mechanical/extracting classes to be reusable.
PiperOrigin-RevId: 272042739
This CL finishes the implementation of the lowering part of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
Strided memrefs correspond conceptually to the following templated C++ struct:
```
template <typename Elem, size_t Rank>
struct {
Elem *ptr;
int64_t offset;
int64_t sizes[Rank];
int64_t strides[Rank];
};
```
The linearization procedure for address calculation for strided memrefs is the same as for linalg views:
`base_offset + SUM_i index_i * stride_i`.
The following CL will unify Linalg and Standard by removing !linalg.view in favor of strided memrefs.
PiperOrigin-RevId: 272033399
The strided MemRef RFC discusses a normalized descriptor and interaction with library calls (https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
Lowering of nested LLVM structs as value types does not play nicely with externally compiled C/C++ functions due to ABI issues.
Solving the ABI problem generally is a very complex problem and most likely involves taking
a dependence on clang that we do not want atm.
A simple workaround is to pass pointers to memref descriptors at function boundaries, which this CL implement.
PiperOrigin-RevId: 271591708
This commit introduces the ROCDL Dialect (i.e. the ROCDL ops + the code to lower those ROCDL ops to LLWM intrinsics/functions). Think of ROCDL Dialect as analogous to the NVVM Dialect, but for AMD GPUs. This patch contains just the essentials needed to get a simple example up and running. We expect to make further additions to the ROCDL Dialect.
This is the first of 3 commits, the follow-up will be:
* add a pass that lowers GPU Dialect to ROCDL Dialect
* add a "mlir-rocm-runner" utility
Closestensorflow/mlir#146
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/146 from deven-amd:deven-rocdl-dialect e78e8005c75a78912631116c78dc844fcc4b0de9
PiperOrigin-RevId: 271511259
The support for functions taking and returning memrefs of floats was introduced
in the first version of the runner, created before MLIR had reliable lowering
of allocation/deallocation to library calls. It forcibly runs MLIR
transformation convering affine, loop and standard dialects into the LLVM
dialect, unlike the other runner flows that accept the LLVM dialect directly.
Memref support leads to more complex layering and is generally fragile. Drop
it in favor of functions returning a scalar, or library-based function calls to
print memrefs and other data structures.
PiperOrigin-RevId: 271330839
1) Process and ignore the following debug instructions: OpSource,
OpSourceContinued, OpSourceExtension, OpString, OpModuleProcessed.
2) While processing OpTypeInt instruction, ignore the signedness
specification. Currently MLIR doesnt make a distinction between signed
and unsigned integer types.
3) Process and ignore BufferBlock decoration (similar to Buffer
decoration). StructType needs to be enhanced to track this attribute
since its needed for proper validation checks.
4) Report better error for unhandled instruction during
deserialization.
PiperOrigin-RevId: 271057060
This change adds support for documenting interfaces and their methods. A tablegen generator for the interface documentation is also added(gen-op-interface-doc).
Documentation is added to an OpInterface via the `description` field:
def MyOpInterface : OpInterface<"MyOpInterface"> {
let description = [{
My interface is very interesting.
}];
}
Documentation is added to an InterfaceMethod via a new `description` field that comes right before the optional body:
InterfaceMethod<"void", "foo", (ins), [{
This is the foo method.
}]>,
PiperOrigin-RevId: 270965485
Similar to mlir-opt, having a -split-input-file mode is quite useful
in mlir-translate. It allows to put logically related tests in the
same test file for better organization.
PiperOrigin-RevId: 270805467
Roll forward of commit 5684a12.
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 270639748
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 269987720
This CL changes translation functions to take MemoryBuffer
as input and raw_ostream as output. It is generally better to
avoid handling files directly in a library (unless the library
is specifically for file manipulation) and we can unify all
file handling to the mlir-translate binary itself.
PiperOrigin-RevId: 269625911
A generic mechanism for (de)serialization of extended instruction sets
is added with this CL. To facilitate this, a new class
"SPV_ExtendedInstSetOp" is added which is a base class for all
operations corresponding to extended instruction sets. The methods to
(de)serialization such ops as well as its dispatch is generated
automatically.
The behavior controlled by autogenSerialization and hasOpcode is also
slightly modified to enable this. They are now decoupled.
1) Setting hasOpcode=1 means the operation has a corresponding
opcode in SPIR-V binary format, and its dispatch for
(de)serialization is automatically generated.
2) Setting autogenSerialization=1 generates the function for
(de)serialization automatically.
So now it is possible to have hasOpcode=0 and autogenSerialization=1
(for example SPV_ExtendedInstSetOp).
Since the dispatch functions is also auto-generated, the input file
needs to contain all operations. To this effect, SPIRVGLSLOps.td is
included into SPIRVOps.td. This makes the previously added
SPIRVGLSLOps.h and SPIRVGLSLOps.cpp unnecessary, and are deleted.
The SPIRVUtilsGen.cpp is also changed to make better use of
formatv,making the code more readable.
PiperOrigin-RevId: 269456263
Certain enum classes in SPIR-V, like function/loop control and memory
access, are bitmasks. This CL introduces a BitEnumAttr to properly
model this and drive auto-generation of verification code and utility
functions. We still store the attribute using an 32-bit IntegerAttr
for minimal memory footprint and easy (de)serialization. But utility
conversion functions are adjusted to inspect each bit and generate
"|"-concatenated strings for the bits; vice versa.
Each such enum class has a "None" case that means no bit is set. We
need special handling for "None". Because of this, the logic is not
general anymore. So right now the definition is placed in the SPIR-V
dialect. If later this turns out to be useful for other dialects,
then we can see how to properly adjust it and move to OpBase.td.
Added tests for SPV_MemoryAccess to check and demonstrate.
PiperOrigin-RevId: 269350620
This allows for explicitly specifying the pipeline to add to the pass manager. This includes the nesting structure, as well as the passes/pipelines to run. A textual pipeline string is defined as a series of names, each of which may in itself recursively contain a nested pipeline description. A name is either the name of a registered pass, or pass pipeline, (e.g. "cse") or the name of an operation type (e.g. "func").
For example, the following pipeline:
$ mlir-opt foo.mlir -cse -canonicalize -lower-to-llvm
Could now be specified as:
$ mlir-opt foo.mlir -pass-pipeline='func(cse, canonicalize), lower-to-llvm'
This will allow for running pipelines on nested operations, like say spirv modules. This does not remove any of the current functionality, and in fact can be used in unison. The new option is available via 'pass-pipeline'.
PiperOrigin-RevId: 268954279
This is done via a new set of instrumentation hooks runBeforePipeline/runAfterPipeline, that signal the lifetime of a pass pipeline on a specific operation type. These hooks also provide the parent thread of the pipeline, allowing for accurate merging of timers running on different threads.
PiperOrigin-RevId: 267909193
This change generalizes the structure of the pass manager to allow arbitrary nesting pass managers for other operations, at any level. The only user visible change to existing code is the fact that a PassManager must now provide an MLIRContext on construction. A new class `OpPassManager` has been added that represents a pass manager on a specific operation type. `PassManager` will remain the top-level entry point into the pipeline, with OpPassManagers being nested underneath. OpPassManagers will still be implicitly nested if the operation type on the pass differs from the pass manager. To explicitly build a pipeline, the 'nest' methods on OpPassManager may be used:
// Pass manager for the top-level module.
PassManager pm(ctx);
// Nest a pipeline operating on FuncOp.
OpPassManager &fpm = pm.nest<FuncOp>();
fpm.addPass(...);
// Nest a pipeline under the FuncOp pipeline that operates on spirv::ModuleOp
OpPassManager &spvModulePM = pm.nest<spirv::ModuleOp>();
// Nest a pipeline on FuncOps inside of the spirv::ModuleOp.
OpPassManager &spvFuncPM = spvModulePM.nest<FuncOp>();
To help accomplish this a new general OperationPass is added that operates on opaque Operations. This pass can be inserted in a pass manager of any type to operate on any operation opaquely. An example of this opaque OperationPass is a VerifierPass, that simply runs the verifier opaquely on the current operation.
/// Pass to verify an operation and signal failure if necessary.
class VerifierPass : public OperationPass<VerifierPass> {
void runOnOperation() override {
Operation *op = getOperation();
if (failed(verify(op)))
signalPassFailure();
markAllAnalysesPreserved();
}
};
PiperOrigin-RevId: 266840344
- the list of passes run by mlir-cpu-runner included -lower-affine and
-lower-to-llvm but was missing -lower-to-cfg (because -lower-affine at
some point used to lower straight to CFG); add -lower-to-cfg in
between. IR with affine ops can now be run by mlir-cpu-runner.
- update -lower-to-cfg to be consistent with other passes (create*Pass methods
were changed to return unique ptrs, but -lower-to-cfg appears to have been
missed).
- mlir-cpu-runner was unable to parse custom form of affine op's - fix
link options
- drop unnecessary run options from test/mlir-cpu-runner/simple.mlir
(none of the test cases had loops)
- -convert-to-llvmir was changed to -lower-to-llvm at some point, but the
create pass method name wasn't updated (this pass converts/lowers to LLVM
dialect as opposed to LLVM IR). Fix this.
(If we prefer "convert", the cmd-line options could be changed to
"-convert-to-llvm/cfg" then.)
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#115
PiperOrigin-RevId: 266666909
Similar to enum, added a generator for structured data. This provide Dictionary that stores a fixed set of values and guarantees the values are valid. It is intended to store a fixed number of values by a given name.
PiperOrigin-RevId: 266437460
Instead of lowering the program in two steps (Standard->LLVM followed
by GPU->NVVM), leading to invalid IR inbetween, the runner now uses
one pattern based rewrite step to go directly from Standard+GPU to
LLVM+NVVM.
PiperOrigin-RevId: 265861934