In the MS C++ ABI, the complete destructor variant for a class with
virtual bases is emitted whereever it is needed, instead of directly
alongside the base destructor variant. The complete destructor calls the
base destructor of the current class and the base destructors of each
virtual base. In order for this to work reliably, translation units that
use the destructor of a class also need to mark destructors of virtual
bases of that class used.
Fixes PR38521
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D77081
The problem was reported in PR45468, applying target features to an
always_inline constructor/destructor runs afoul of GlobalDecl
construction assert when checking for target-feature compatibility.
The core problem is fixed by using the version of the check that takes a
FunctionDecl rather than the GlobalDecl. However, while writing the
test, I discovered that source locations weren't properly set for this
check on ctors/dtors. This patch also fixes constructors and CALLED destructors.
Unfortunately, it doesn't seem too possible to get a meaningful source
location for a 'cleanup' destructor, so those are still 'frontend' level
errors unfortunately. A fixme was added to the test to cover that
situation.
Summary:
We're smart and do constant folding when emitting conditional operators.
Thus we emit the live value as a lvalue. This doesn't work if the live value is a throw expression.
Handle this by emitting the throw and returning the dead value as the lvalue.
Fixes PR28184.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77502
Summary:
This change adds DIFlagNonTrivial to forward declarations of
DICompositeType. It adds the flag to nontrivial types and types with
unknown triviality.
It fixes adding the "CxxReturnUdt" flag to functions inconsistently,
since it is added based on whether the return type is marked NonTrivial, and
that changes if the return type was a forward declaration.
continues the discussion at https://reviews.llvm.org/D75215
Bug: https://bugs.llvm.org/show_bug.cgi?id=44785
Reviewers: rnk, dblaikie, aprantl
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77436
Currently Clang does not respect -fno-unroll-loops during LTO. During
D76916 it was suggested to respect -fno-unroll-loops on a TU basis.
This patch uses the existing llvm.loop.unroll.disable metadata to
disable loop unrolling explicitly for each loop in the TU if
unrolling is disabled. This should ensure that loops from TUs compiled
with -fno-unroll-loops are skipped by the unroller during LTO.
This also means that if a loop from a TU with -fno-unroll-loops
gets inlined into a TU without this option, the loop won't be
unrolled.
Due to the fact that some transforms might drop loop metadata, there
potentially are cases in which we still unroll loops from TUs with
-fno-unroll-loops. I think we should fix those issues rather than
introducing a function attribute to disable loop unrolling during LTO.
Improving the metadata handling will benefit other use cases, like
various loop pragmas, too. And it is an improvement to clang completely
ignoring -fno-unroll-loops during LTO.
If that direction looks good, we can use a similar approach to also
respect -fno-vectorize during LTO, at least for LoopVectorize.
In the future, this might also allow us to remove the UnrollLoops option
LLVM's PassManagerBuilder.
Reviewers: Meinersbur, hfinkel, dexonsmith, tejohnson
Reviewed By: Meinersbur, tejohnson
Differential Revision: https://reviews.llvm.org/D77058
Summary:
In constructor type homing mode sometimes complete debug info for constexpr
types was missing, because there was not a constructor emitted. This change
makes constructor type homing ignore constexpr types.
Reviewers: rnk, dblaikie
Subscribers: aprantl, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77432
This addresses the immediate bug, though in theory we could still
produce a default parameter for the DWARF in this test case - but other
cases will be definitely unachievable (you could have a default
parameter that cannot be evaluated - so long as the user overrode it
with another value rather than relying on that default)
Summary:
The construction of constants for structs/unions was conflicting the
expected memory layout for over-sized bit-fields. When building the
necessary bits for those fields, clang was ignoring the size information
computed for the struct/union memory layout and using the original data
from the AST's FieldDecl information. This caused an issue in big-endian
targets, where the field's contant was incorrectly misplaced due to
endian calculations.
This patch aims to separate the constant value from the necessary
padding bits, using the proper size information for each one of them.
With this, the layout of constants for over-sized bit-fields matches the
ABI requirements.
Reviewers: rsmith, eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77048
Caused an assertion due to mismatched bit widths - this seems like the
right API to use for a possibly width-varying equality test. Though
certainly open to some post-commit review feedback if there's a more
suitable way to do this comparison/test.
The code was pretending to be doing something useful with vectors, but
really it was doing nothing: the element type of a vector is always a
scalar type, so constWithPadding would always just return the input constant.
Split off from D75661 so it can be reviewed separately.
While I'm here, also add testcase to show missing vector handling.
Differential Revision: https://reviews.llvm.org/D76528
FinishThunk, and the invariant of setting and then unsetting
CurCodeDecl, was added in 7f416cc426 (2015). The invariant didn't
exist when I added this musttail codepath in ab2090d107 (2014).
Recently in 28328c3771, I started using this codepath on non-Windows
platforms, and users reported problems during release testing (PR44987).
The issue was already present for users of EH on i686-windows-msvc, so I
added a test for that case as well.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D76444
Add a test for UsedDeclVisitor
This test is reduced from mlir/lib/Transforms/AffineDataCopyGeneration.cpp
to make sure there is no assertion due to UsedDeclVisitor.
Summary:
[Clang] Attribute to allow defining undef global variables
Initializing global variables is very cheap on hosted implementations. The
C semantics of zero initializing globals work very well there. It is not
necessarily cheap on freestanding implementations. Where there is no loader
available, code must be emitted near the start point to write the appropriate
values into memory.
At present, external variables can be declared in C++ and definitions provided
in assembly (or IR) to achive this effect. This patch provides an attribute in
order to remove this reason for writing assembly for performance sensitive
freestanding implementations.
A close analogue in tree is LDS memory for amdgcn, where the kernel is
responsible for initializing the memory after it starts executing on the gpu.
Uninitalized variables in LDS are observably cheaper than zero initialized.
Patch is loosely based on the cuda __shared__ and opencl __local variable
implementation which also produces undef global variables.
Reviewers: kcc, rjmccall, rsmith, glider, vitalybuka, pcc, eugenis, vlad.tsyrklevich, jdoerfert, gregrodgers, jfb, aaron.ballman
Reviewed By: rjmccall, aaron.ballman
Subscribers: Anastasia, aaron.ballman, davidb, Quuxplusone, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74361
After a first attempt to fix the test-suite failures, my first recommit
caused the same failures again. I had updated CMakeList.txt files of
tests that needed -fcommon, but it turns out that there are also
Makefiles which are used by some bots, so I've updated these Makefiles
now too.
See the original commit message for more details on this change:
0a9fc9233e
This includes fixes for:
- test-suite: some benchmarks need to be compiled with -fcommon, see D75557.
- compiler-rt: one test needed -fcommon, and another a change, see D75520.
This reverts commit 0a9fc9233e.
Going to look at the asan failures.
I find the failures in the test suite weird, because they look
like compile time test and I don't understand how that can be
failing, but will have a brief look at that too.
This makes -fno-common the default for all targets because this has performance
and code-size benefits and is more language conforming for C code.
Additionally, GCC10 also defaults to -fno-common and so we get consistent
behaviour with GCC.
With this change, C code that uses tentative definitions as definitions of a
variable in multiple translation units will trigger multiple-definition linker
errors. Generally, this occurs when the use of the extern keyword is neglected
in the declaration of a variable in a header file. In some cases, no specific
translation unit provides a definition of the variable. The previous behavior
can be restored by specifying -fcommon.
As GCC has switched already, we benefit from applications already being ported
and existing documentation how to do this. For example:
- https://gcc.gnu.org/gcc-10/porting_to.html
- https://wiki.gentoo.org/wiki/Gcc_10_porting_notes/fno_common
Differential revision: https://reviews.llvm.org/D75056
This patch adds support for dwarf emission/dumping part of debuginfo
generation for defaulted parameters.
Reviewers: probinson, aprantl, dblaikie
Reviewed By: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D73462
This aims to fix a missed inlining case.
If there's a virtual call in the callee on an alloca (stack allocated object) in
the caller, and the callee is inlined into the caller, the post-inline cleanup
would devirtualize the virtual call, but if the next iteration of
DevirtSCCRepeatedPass doesn't happen (under the new pass manager), which is
based on a heuristic to determine whether to reiterate, we may miss inlining the
devirtualized call.
This enables inlining in clang/test/CodeGenCXX/member-function-pointer-calls.cpp.
This is a second commit after a revert
https://reviews.llvm.org/rG4569b3a86f8a4b1b8ad28fe2321f936f9d7ffd43 and a fix
https://reviews.llvm.org/rG41e06ae7ba91.
Differential Revision: https://reviews.llvm.org/D69591
DevirtSCCRepeatedPass iteration. Needs ReviewPublic
This aims to fix a missed inlining case.
If there's a virtual call in the callee on an alloca (stack allocated object) in
the caller, and the callee is inlined into the caller, the post-inline cleanup
would devirtualize the virtual call, but if the next iteration of
DevirtSCCRepeatedPass doesn't happen (under the new pass manager), which is
based on a heuristic to determine whether to reiterate, we may miss inlining the
devirtualized call.
This enables inlining in clang/test/CodeGenCXX/member-function-pointer-calls.cpp.
Summary:
Right now we annotate C++'s `operator new` with `noalias` attribute,
which very much is healthy for optimizations.
However as per [[ http://eel.is/c++draft/basic.stc.dynamic.allocation | `[basic.stc.dynamic.allocation]` ]],
there are more promises on global `operator new`, namely:
* non-`std::nothrow_t` `operator new` *never* returns `nullptr`
* If `std::align_val_t align` parameter is taken, the pointer will also be `align`-aligned
* ~~global `operator new`-returned pointer is `__STDCPP_DEFAULT_NEW_ALIGNMENT__`-aligned ~~ It's more caveated than that.
Supplying this information may not cause immediate landslide effects
on any specific benchmarks, but it for sure will be healthy for optimizer
in the sense that the IR will better reflect the guarantees provided in the source code.
The caveat is `-fno-assume-sane-operator-new`, which currently prevents emitting `noalias`
attribute, and is automatically passed by Sanitizers ([[ https://bugs.llvm.org/show_bug.cgi?id=16386 | PR16386 ]]) - should it also cover these attributes?
The problem is that the flag is back-end-specific, as seen in `test/Modules/explicit-build-flags.cpp`.
But while it is okay to add `noalias` metadata in backend, we really should be adding at least
the alignment metadata to the AST, since that allows us to perform sema checks on it.
Reviewers: erichkeane, rjmccall, jdoerfert, eugenis, rsmith
Reviewed By: rsmith
Subscribers: xbolva00, jrtc27, atanasyan, nlopes, cfe-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D73380
This has no effect on how LLVM passes the arguments, but it prevents
rewriteWithInAlloca from thinking that these parameters should be part
of the inalloca pack.
Follow-up to D72114
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D74452
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This brings back 2af74e27ed and reverts
eaabaf7e04.
The changes were correct, the code that was broken contained an ODR
violation that assumed that these types are passed equivalently:
struct alignas(uint64_t) Wrapper { uint64_t P };
void f(uint64_t p);
void f(Wrapper p);
MSVC does not pass them the same way, and so clang-cl should not pass
them the same way either.
The C++ rules briefly allowed this, but the rule changed nearly 10 years
ago and we never updated our implementation to match. However, we've
warned on this by default for a long time, and no other compiler accepts
(even as an extension).
These temporaries are only used in the callee, and their memory can be reused
after the call is complete.
rdar://58552124
Differential revision: https://reviews.llvm.org/D74094
patch from Philippe Daouadi <blastrock@free.fr>
This is an attempt to fix
[PR#44368](https://bugs.llvm.org/show_bug.cgi?id=44368)
This effectively reverts [D1783](https://reviews.llvm.org/D1783). It
doesn't break the current tests and fixes the test that this commit
adds.
We now decide of a lambda linkage only depending on the visibility of
its parent context.
Differential Revision: https://reviews.llvm.org/D73701
constant initialization.
Removing this zeroing regressed our code generation in a few cases, also
fixed here. We now compute whether a variable has constant destruction
even if it doesn't have a constant initializer, by trying to destroy a
default-initialized value, and skip emitting a trivial default
constructor for a variable even if it has non-trivial (but perhaps
constant) destruction.
Currently when generating debug-info for a BlockDecl we are setting the Name to the mangled name and not setting the LinkageName.
This means we see the mangled name for block invcations ends up in DW_AT_Name and not in DW_AT_linkage_name.
This patch fixes this case so that we also set the LinkageName as well.
Differential Revision: https://reviews.llvm.org/D73282