The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267231
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
llvm-svn: 267022
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498
Previously the RedoInsts was processed at the end of the block.
However it was possible that it left behind some instructions that
were not canonicalized.
This should guarantee that any previous instruction in the basic
block is canonicalized before we process a new instruction.
llvm-svn: 258830
Before reevaluating instructions, iterate over all instructions
to be reevaluated and remove trivially dead instructions and if
any of it's operands become trivially dead, mark it for deletion
until all trivially dead instructions have been removed
llvm-svn: 256773
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Terrifyingly, one of them is a mishandling of floating point vectors
in Constant::isZero(). How exactly this issue survived this long
is beyond me.
llvm-svn: 253655
We sometimes create intermediate subtract instructions during
reassociation. Adding these to the worklist to revisit exposes many
additional reassociation opportunities.
Patch by Aditya Nandakumar.
llvm-svn: 253240
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.
llvm-svn: 247263
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
iisUnmovableInstruction() had a list of instructions hardcoded which are
considered unmovable. The list lacked (at least) an entry for the va_arg
and cmpxchg instructions.
Fix this by introducing a new Instruction::mayBeMemoryDependent()
instead of maintaining another instruction list.
Patch by Matthias Braun <matze@braunis.de>.
Differential Revision: http://reviews.llvm.org/D11577
rdar://problem/22118647
llvm-svn: 244244
Reassociate mutated existing instructions in order to form negations
which would create additional reassociate opportunities.
This fixes PR23926.
llvm-svn: 240593
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238602
Canonicalizing 'x [+-] (-Constant * y)' is not a win if we don't *know*
we will open up CSE opportunities.
If the multiply was 'nsw', then negating 'y' requires us to clear the
'nsw' flag. If this is actually worth pursuing, it is probably more
appropriate to do so in GVN or EarlyCSE.
This fixes PR23675.
llvm-svn: 238397
This reapplies the patch previously committed at revision 232190. This was
reverted at revision 232196 as it caused test failures in tests that did not
expect operands to be commuted. I have made the tests more resilient to
reassociation in revision 232206.
llvm-svn: 232209
This patch adds initial support for vector instructions to the reassociation
pass. It enables most parts of the pass to work with vectors but to keep the
size of the patch small, optimization of Xor trees, canonicalization of
negative constants and converting shifts to muls, etc., have been left out.
This will be handled in later patches.
The patch is based on an initial patch by Chad Rosier.
Differential Revision: http://reviews.llvm.org/D7566
llvm-svn: 232190
Summary:
When trying to canonicalize negative constants out of
multiplication expressions, we need to check that the
constant is not INT_MIN which cannot be negated.
Reviewers: mcrosier
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7286
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228872
The alloca's type is irrelevant, only those types which are used in a
load or store of the exact size of the slice should be considered.
This manifested as an assertion failure when we compared the various
types: we had a size mismatch.
This fixes PR21480.
llvm-svn: 222499
This reverts commit r222142. This is causing/exposing an execution-time regression
in spec2006/gcc and coremark on AArch64/A57/Ofast.
Conflicts:
test/Transforms/Reassociate/optional-flags.ll
llvm-svn: 222398
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
Prior to this commit fmul and fadd binary operators were being canonicalized for
both scalar and vector versions. We now canonicalize add, mul, and, or, and xor
vector instructions.
llvm-svn: 222006
This is a reapplication of r221171, but we only perform the transformation
on expressions which include a multiplication. We do not transform rem/div
operations as this doesn't appear to be safe in all cases.
llvm-svn: 221721
instructions. Inlining might cause such cases and it's not valid to
reassociate floating-point instructions without the unsafe algebra flag.
Patch by Mehdi Amini <mehdi_amini@apple.com>!
llvm-svn: 221462