r223113 added support for ARM modified immediate assembly syntax. Which
assumes all immediate operands are prefixed with a '#'. This assumption
is wrong as per the ARMARM - which recommends that all '#' characters be
treated optional. The current patch fixes this regression and adds a test
case. A follow-up patch will expand the test coverage to other instructions.
llvm-svn: 223381
r223113 added support for ARM modified immediate assembly syntax. That patch
has broken support for immediate expressions, as in:
add r0, #(4 * 4)
It wasn't caught because we don't have any tests for this feature. This patch
fixes this regression and adds test cases.
llvm-svn: 223366
Previously .cpu directive in ARM assembler didnt switch to the new CPU and
therefore acted as a nop. This implemented real action for .cpu and eg.
allows to assembler FreeBSD kernel with -integrated-as.
llvm-svn: 223147
Certain ARM instructions accept 32-bit immediate operands encoded as a 8-bit
integer value (0-255) and a 4-bit rotation (0-30, even). Current ARM assembly
syntax support in LLVM allows the decoded (32-bit) immediate to be specified
as a single immediate operand for such instructions:
mov r0, #4278190080
The ARMARM defines an extended assembly syntax allowing the encoding to be made
more explicit, as in:
mov r0, #255, #8 ; (same 32-bit value as above)
The behaviour of the two instructions can be different w.r.t flags, which is
documented under "Modified immediate constants" in ARMARM. This patch enables
support for this extended syntax at the MC layer.
llvm-svn: 223113
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
llvm-svn: 222319
Some ARM FPUs only have 16 double-precision registers, rather than the
normal 32. LLVM represents this with the D16 target feature. This is
currently used by CodeGen to avoid using high registers when they are
not available, but the assembler and disassembler do not.
I fix this in the assmebler and disassembler rather than the
InstrInfo.td files, as the latter would require a large number of
changes everywhere one of the floating-point instructions is referenced
in the backend. This solution is similar to the one used for
co-processor numbers and MSR masks.
llvm-svn: 221341
The Cortex-M7 has 3 options for its FPU: none, FPv5-SP-D16 and
FPv5-DP-D16. FPv5 has the same instructions as FP-ARMv8, so it can be
modelled using the same target feature, and all double-precision
operations are already disabled by the fp-only-sp target features.
llvm-svn: 218747
This patch makes the ARM backend transform 3 operand instructions such as
'adds/subs' to the 2 operand version of the same instruction if the first
two register operands are the same.
Example: 'adds r0, r0, #1' will is transformed to 'adds r0, #1'.
Currently for some instructions such as 'adds' if you try to assemble
'adds r0, r0, #8' for thumb v6m the assembler would throw an error message
because the immediate cannot be encoded using 3 bits.
The backend should be smart enough to transform the instruction to
'adds r0, #8', which allows for larger immediate constants.
Patch by Ranjeet Singh.
llvm-svn: 218521
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.
This patch also fixes the validation routines for NEON splat immediates which
were wrong.
Fixes PR20702.
llvm-svn: 218450
v7M only allows the 16-bit encoding of the 'cps' (Change Processor
State) instruction, and does not have the 32-bit encoding which is
valid from v6T2 onwards.
llvm-svn: 218382
Certain directives are unsupported on Windows (some of which could/should be
supported). We would not diagnose the use but rather crash during the emission
as we try to access the Target Streamer. Add an assertion to prevent creating a
NULL reference (which is not permitted under C++) as well as a test to ensure
that we can diagnose the disabled directives.
llvm-svn: 218014
Rather than relying on support for a specific directive to determine if we are
targeting MachO, explicitly check the output format.
As an additional bonus, cleanup the caret diagnostic for the non-MachO case and
avoid the spurious error caused by not discarding the statement.
llvm-svn: 218012
This patch implements a few changes related to the Thumb2 M-class MSR instruction:
* better handling of unpredictable encodings,
* recognition of the _g and _nzcvqg variants by the asm parser only if the DSP
extension is available, preferred output of MSR APSR moves with the _<bits>
suffix for v7-M.
Patch by Petr Pavlu.
llvm-svn: 216874
ARM in particular is getting dangerously close to exceeding 32 bits worth of
possible subtarget features. When this happens, various parts of MC start to
fail inexplicably as masks get truncated to "unsigned".
Mostly just refactoring at present, and there's probably no way to test.
llvm-svn: 215887
This was a thinko. The intent was to flip the explicit bits that need toggling
rather than all bits. This would result in incorrect behaviour (which now is
tested).
Thanks to Nico Weber for pointing this out!
llvm-svn: 215846
These are system-only instructions for CPUs with virtualization
extensions, allowing a hypervisor easy access to all of the various
different AArch32 registers.
rdar://problem/17861345
llvm-svn: 215700
Those registers are VFP/NEON and vector instructions should be used instead,
but old cores rely on those co-processors to enable VFP unwinding. This change
was prompted by the libc++abi's unwinding routine and is also present in many
legacy low-level bare-metal code that we ought to compile/assemble.
Fixing bug PR20025 and allowing PR20529 to proceed with a fix in libc++abi.
llvm-svn: 214802
The ARM ARM prohibits LDRB/LDRSB instructions with writeback into the destination register. With this commit this constraint is now enforced and we stop assembling LDRH/LDRSH instructions with unpredictable behavior.
llvm-svn: 214500
The ARM ARM prohibits LDRH/LDRSH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling LDRH/LDRSH instructions with unpredictable behavior.
llvm-svn: 214499
The ARM ARM prohibits LDR instructions with writeback into the destination register. With this commit this constraint is now enforced and we stop assembling LDR instructions with unpredictable behavior.
llvm-svn: 214498
The subtarget information is the ultimate source of truth for the feature set
that is enabled at this point. We would previously not propagate the feature
information to the subtarget. While this worked for the most part (features
would be enabled/disabled as requested), if another operation that changed the
feature bits was encountered (such as a mode switch via a .arm or .thumb
directive), we would end up resetting the behaviour of the architectural
extensions.
Handling this properly requires a slightly more complicated handling. We need
to check if the feature is now being toggled. If so, only then do we toggle the
features. In return, we no longer have to calculate the feature bits ourselves.
The test changes are mostly to the diagnosis, which is now more uniform (a nice
side effect!). Add an additional test to ensure that we handle this case
properly.
Thanks to Nico Weber for alerting me to this issue!
llvm-svn: 214057
The ARM ARM prohibits STRH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRH instructions with unpredictable behavior.
llvm-svn: 213850
The ARM ARM prohibits STRB instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRB instructions with unpredictable behavior.
llvm-svn: 213750
The ARM ARM prohibits STR instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STR instructions with unpredictable behavior.
llvm-svn: 213745
Additional compliant GAS names for coprocessor register name
are enabled for all instruction with parameter MCK_CoprocReg:
LDC,LDC2,STC,STC2,CDP,CDP2,MCR,MCR2,MCRR,MCRR2,MRC,MRC2,MRRC,MRRC2
Patch by Andrey Kuharev.
llvm-svn: 211776
I saw at least a memory leak or two from inspection (on probably
untested error paths) and r206991, which was the original inspiration
for this change.
I ran this idea by Jim Grosbach a few weeks ago & he was OK with it.
Since it's a basically mechanical patch that seemed sufficient - usual
post-commit review, revert, etc, as needed.
llvm-svn: 210427
The UDF instruction is a reserved undefined instruction space. The assembler
mnemonic was introduced with ARM ARM rev C.a. The instruction is not predicated
and the immediate constant is ignored by the CPU. Add support for the three
encodings for this instruction.
The changes to the invalid instruction test is due to the fact that the invalid
instructions actually overlap with the undefined instruction. Introduction of
the new instruction results in a partial decode as an undefined sequence. Drop
the tests as they are invalid instruction patterns anyways.
llvm-svn: 208751
Only the object streamers need to track if a symbol should be marked thumb or
not. This ports the ELF case. The COFF case is not ported since it is currently
not working for some other reason (I will report a bug).
llvm-svn: 207366
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
llvm-svn: 207080
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
expressions for mov instructions instead of silently truncating by default.
For the ARM assembler, we want to avoid misleadingly allowing something
like "mov r0, <symbol>" especially when we turn it into a movw and the
expression <symbol> does not have a :lower16: or :upper16" as part of the
expression. We don't want the behavior of silently truncating, which can be
unexpected and lead to bugs that are difficult to find since this is an easy
mistake to make.
This does change the previous behavior of llvm but actually matches an
older gnu assembler that would not allow this but print less useful errors
of like “invalid constant (0x927c0) after fixup” and “unsupported relocation on
symbol foo”. The error for llvm is "immediate expression for mov requires
:lower16: or :upper16" with correct location information on the operand
as shown in the added test cases.
rdar://12342160
llvm-svn: 206669
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
FYI, re-committing this with a tweak so MemoryOp's default
constructor is trivial and will work with MSVC 2012. Thanks
to Reid Kleckner and Jim Grosbach for help with the tweak.
rdar://11312406
llvm-svn: 205986