There are 20 LLVM math intrinsics that correspond to mathlib calls according to the LangRef:
http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics
We were only converting 3 mathlib calls (sqrt, fma, pow) and 12 builtin calls (ceil, copysign,
fabs, floor, fma, fmax, fmin, nearbyint, pow, rint, round, trunc) to their intrinsic-equivalents.
This patch pulls the transforms together and handles all 20 cases. The switch is guarded by a
check for const-ness to make sure we're not doing the transform if errno could possibly be set by
the libcall or builtin.
Differential Revision: https://reviews.llvm.org/D40044
llvm-svn: 319593
code size.
Currently clang expands a call to __builtin_os_log_format into a long
sequence of instructions at the call site, causing code size to
increase in some cases.
This commit attempts to reduce code size by emitting a helper function
that can be shared by calls to __builtin_os_log_format with similar
formats and arguments. The helper function has linkonce_odr linkage to
enable the linker to merge identical functions across translation units.
Attribute 'noinline' is attached to the helper function at -Oz so that
the inliner doesn't inline functions that can potentially be merged.
This commit also fixes a bug where the generated IR writes past the end
of the buffer when "%m" is the last specifier appearing in the format
string passed to __builtin_os_log_format.
Original patch by Duncan Exon Smith.
rdar://problem/34065973
rdar://problem/34196543
Differential Revision: https://reviews.llvm.org/D38606
llvm-svn: 315045
This reverts commit r285007 and reapply r284990, with a fix for the
opencl test that I broke. Original commit message follows:
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 285019
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 284990
Summary: This patch converts finite/__finite to builtin functions so that it will be inlined by compiler.
Reviewers: hfinkel, davidxl, efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D24483
llvm-svn: 281509
This is important for building libclc. Since r273039 tests are failing
due to now emitting calls to these functions instead of emitting the
DAG node. The libm function names are implemented for OpenCL, and should
call the locally defined versions, so -fno-builtin is used. The IR
Some functions use the __builtins and expect the intrinsics to be
emitted. Without this we end up with nobuiltin calls to intrinsics
or to unsupported library calls.
llvm-svn: 274370
isinf (is infinite) and isfinite should be implemented with the same function
except we change the comparison operator.
See PR27145 for more details:
https://llvm.org/bugs/show_bug.cgi?id=27145
Ref: forked off of the discussion in D18513.
Differential Revision: http://reviews.llvm.org/D18648
llvm-svn: 265675
Somehow, we never managed to implement this fully. We could constant
fold it like crazy, including constant folding complex arguments, etc.
But if you actually needed to generate code for it, error.
I've implemented it using the somewhat obvious lowering. Happy for
suggestions on a more clever way to lower this.
Now, what you might ask does this have to do with modules? Fun story. So
it turns out that libstdc++ actually uses __builtin_isinf_sign to
implement std::isinf when in C++98 mode, but only inside of a template.
So if we're lucky, and we never instantiate that, everything is good.
But once we try to instantiate that template function, we need this
builtin. All of my customers at least are using C++11 and so they never
hit this code path.
But what does that have to do with modules? Fun story. So it turns out
that with modules we actually observe a bunch of bugs in libstdc++ where
their <cmath> header clobbers things exposed by <math.h>. To fix these,
we have to provide global function definitions to replace the macros
that C99 would have used. And it turns out that ::isinf needs to be
implemented using the exact semantics used by the C++98 variant of
std::isinf. And so I started to fix this bug in libstdc++ and ceased to
be able to compile libstdc++ with Clang.
The yaks are legion.
llvm-svn: 232778
Opt in Win64 to supporting sjlj lowering. We have the backend lowering,
so I think this was just an oversight because WinX86_64TargetCodeGenInfo
doesn't inherit from X86_64TargetCodeGenInfo.
llvm-svn: 231280
mingw64's headers implement fabs by calling __builtin_fabs, so using the
library call results in an infinite loop. If the backend legalizes
@llvm.fabs as a call to fabs later, things should work out, as the crt
provides a definition.
llvm-svn: 221206
AFAICT the semantics of frem match libm's fmod.
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
llvm-svn: 218488
Using the intrinsic allows the SelectionDAGBuilder to turn this call
into the FABS Node and also the intrinsic is something the vectorizer knows
how to vectorize.
This patch also sets the readnone attribute on this call, which should
enable additional optmizations.
llvm-svn: 217042
GCC has always supported this on PowerPC and 4.8 supports it on all platforms,
so it's a good idea to expose it in clang too. LLVM supports this on all targets.
llvm-svn: 165362
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
functionality, fixing a crash on the attached testcase. Eliminate the
BuiltinFunctions cache, as it can contain dangling pointers. This fixes
a bunch of valgrind errors on test/CodeGen/builtins.c
llvm-svn: 67484