Module flags are key-value pairs associated with the module. They include a
'behavior' value, indicating how module flags react when mergine two
files. Normally, it's just the union of the two module flags. But if two module
flags have the same key, then the resulting flags are dictated by the behaviors.
Allowable behaviors are:
Error
Emits an error if two values disagree.
Warning
Emits a warning if two values disagree.
Require
Emits an error when the specified value is not present
or doesn't have the specified value. It is an error for
two (or more) llvm.module.flags with the same ID to have
the Require behavior but different values. There may be
multiple Require flags per ID.
Override
Uses the specified value if the two values disagree. It
is an error for two (or more) llvm.module.flags with the
same ID to have the Override behavior but different
values.
llvm-svn: 150300
the build bot in some cases. The basic issue happens when a source module contains
both a "%foo" type and a "%foo.42" type. It will see the later one, check to see if
the destination module contains a "%foo" type, and it will return true... because
both the source and destination modules are in the same LLVMContext. We don't want
to map source types to other source types, so don't do the remapping if the mapped
type came from the source module.
Unfortunately, I've been unable to reduce a decent testcase for this, kc++ is
pretty great that way.
llvm-svn: 147010
merging types by name when we can. We still don't guarantee type name linkage
but we do it when obviously the right thing to do. This makes LTO type names
easier to read, for example.
llvm-svn: 146932
internal nightly testers. Original commit message:
By popular demand, link up types by name if they are isomorphic and one is an
autorenamed version of the other. This makes the IR easier to read, because
we don't end up with random renamed versions of the types after LTO'ing a large
app.
llvm-svn: 146838
autorenamed version of the other. This makes the IR easier to read, because
we don't end up with random renamed versions of the types after LTO'ing a large app.
llvm-svn: 146728
This line, and those below, will be ignored--
M include/llvm/Linker.h
M tools/bugpoint/Miscompilation.cpp
M tools/bugpoint/BugDriver.cpp
M tools/llvm-link/llvm-link.cpp
M lib/Linker/LinkModules.cpp
llvm-svn: 141606
It happens (for example) when you want to have a dependency on the .so
with the specific version, like liblzma.so.1.0.0 or
libcrypto.so.0.9.8.
llvm-svn: 140201
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
1. Take a flags argument instead of a bool. This makes
it more clear to the reader what it is used for.
2. Add a flag that says that "remapping a value not in the
map is ok".
3. Reimplement MapValue to share a bunch of code and be a lot
more efficient. For lookup failures, don't drop null values
into the map.
4. Using the new flag a bunch of code can vaporize in LinkModules
and LoopUnswitch, kill it.
No functionality change.
llvm-svn: 123058
source module *and* it must be merged (instead of simply replaced or appended
to), then merge instead of replacing or adding another global.
The ObjC __image_info section was being appended to because of this
failure. This caused a crash because the linker expects the image info section
to be a specific size.
<rdar://problem/8198537>
llvm-svn: 115753
fix: add a flag to MapValue and friends which indicates whether
any module-level mappings are being made. In the common case of
inlining, no module-level mappings are needed, so MapValue doesn't
need to examine non-function-local metadata, which can be very
expensive in the case of a large module with really deep metadata
(e.g. a large C++ program compiled with -g).
This flag is a little awkward; perhaps eventually it can be moved
into the ClonedCodeInfo class.
llvm-svn: 112190
which does the same thing. This eliminates redundant code and
handles MDNodes better. MDNode linking still doesn't fully
work yet though.
llvm-svn: 111941
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
Modules and ModuleProviders. Because the "ModuleProvider" simply materializes
GlobalValues now, and doesn't provide modules, it's renamed to
"GVMaterializer". Code that used to need a ModuleProvider to materialize
Functions can now materialize the Functions directly. Functions no longer use a
magic linkage to record that they're materializable; they simply ask the
GVMaterializer.
Because the C ABI must never change, we can't remove LLVMModuleProviderRef or
the functions that refer to it. Instead, because Module now exposes the same
functionality ModuleProvider used to, we store a Module* in any
LLVMModuleProviderRef and translate in the wrapper methods. The bindings to
other languages still use the ModuleProvider concept. It would probably be
worth some time to update them to follow the C++ more closely, but I don't
intend to do it.
Fixes http://llvm.org/PR5737 and http://llvm.org/PR5735.
llvm-svn: 94686
missing ones are libsupport, libsystem and libvmcore. libvmcore is
currently blocked on bugpoint, which uses EH. Once it stops using
EH, we can switch it off.
This #if 0's out 3 unit tests, because gtest requires RTTI information.
Suggestions welcome on how to fix this.
llvm-svn: 94164
Linking modules containing aliases to GEPs is still not quite right. GEPs that are equivalent to bitcasts will be replaced by bitcasts, GEPs that are not will just break. Aliases to GEPs that are not equivalent to bitcasts are horribly broken anyway (it might be worth adding an assert when creating the alias to prevent these being created; they just cause problems later).
llvm-svn: 93052
forcing them down into various .cpp files.
This change also:
1. Renames TimeValue::toString() and Path::toString() to ::str()
for similarity with the STL.
2. Removes all stream insertion support for sys::Path, forcing
clients to call .str().
3. Removes a use of Config/alloca.h from bugpoint, using smallvector
instead.
4. Weans llvm-db off <iostream>
sys::Path really needs to be gutted, but I don't have the desire to
do it at this point.
llvm-svn: 79869