This adds a number of missing Thumb1 opcodes so that the peephole optimiser can
remove redundant CMP instructions.
Differential Revision: https://reviews.llvm.org/D57833
llvm-svn: 354564
During type promotion, sometimes we convert negative an add with a
negative constant into a sub with a positive constant. The loop that
performs this transformation has two issues:
- it iterates over a set, causing non-determinism.
- it breaks, instead of continuing, when it finds the first
non-negative operand.
Differential Revision: https://reviews.llvm.org/D58452
llvm-svn: 354557
Add the opcode for ADDrr / t2ADDrr to the Opcode cache, as we did for
all other opcodes where the handling is otherwise the same between arm
mode and thumb2.
llvm-svn: 354115
ConvertTruncs is used to replace a trunc for an AND mask, however
this function wasn't working as expected. By performing the change
later, we can create a wide type integer mask instead of a narrow -1
value, which could then be simply removed (incorrectly). Because we
now perform this action later, it's necessary to cache the trunc type
before we perform the promotion.
Differential Revision: https://reviews.llvm.org/D57686
llvm-svn: 354108
The Arm peephole optimiser code keeps track of both an MI and a SubAdd that can
be used to optimise away a CMP. In the rare case that both are found and not
ruled-out as valid, we could end up setting the flags on the wrong one.
Instead make sure we are using SubAdd if it exists, as it will be closer to the
CMP.
The testcase here is a little theoretical, with a dead def of cpsr. It should
hopefully show the point.
Differential Revision: https://reviews.llvm.org/D58176
llvm-svn: 354018
The v8m.base ISA contains movw, which can operate on an unsigned
16-bit value. Add the pattern that converts an add with a negative
value, that could fit into 16-bits when negated, into a sub with that
positive value.
Differential Revision: https://reviews.llvm.org/D57942
llvm-svn: 353692
The whole design of generating LDMs/STMs is fragile and unreliable: it depends on
rescheduling here in the LoadStoreOptimizer that isn't register pressure aware
and regalloc that isn't aware of generating LDMs/STMs.
This patch adds a (hidden) option to control the total number of instructions that
can be re-ordered. I appreciate this looks only a tiny bit better than a hard-coded
constant, but at least it allows more easy experimentation with different values
for now. Ideally we calculate this reorder limit based on some heuristics, and take
register pressure into account. I might be looking into that next.
Differential Revision: https://reviews.llvm.org/D57954
llvm-svn: 353678
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
In many places in the backend, we like to know whether we're
optimising for code size and this is performed by checking the
current machine function attributes. A subtarget is created on a
per-function basis, so it's possible to know when we're compiling for
code size on construction so record this in the new object.
Differential Revision: https://reviews.llvm.org/D57812
llvm-svn: 353501
Modify GenerateConstantOffsetsImpl to create offsets that can be used
by indexed addressing modes. If formulae can be generated which
result in the constant offset being the same size as the recurrence,
we can generate a pre-indexed access. This allows the pointer to be
updated via the single pre-indexed access so that (hopefully) no
add/subs are required to update it for the next iteration. For small
cores, this can significantly improve performance DSP-like loops.
Differential Revision: https://reviews.llvm.org/D55373
llvm-svn: 353403
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
This prevents Constant Hoisting from pulling the constant out of the block,
allowing us to still produce LDRH/UXTH nodes. LDRB/UXTB (255) is already cheap
by the default getIntImmCost, but I've added it for clarity.
Differential Revision: https://reviews.llvm.org/D57671
llvm-svn: 353040
This cleans up all GetElementPtr creation in LLVM to explicitly pass a
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57173
llvm-svn: 352913
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
Constants can also be materialised using the negated value and a MVN, and this
case seem to have been missed for Thumb2. To check the constant materialisation
costs, we now call getT2SOImmVal twice, once for the original constant and then
also for its negated value, and this function checks if the constant can both
be splatted or rotated.
This was revealed by a test that optimises for minsize: instead of a LDR
literal pool load and having a literal pool entry, just a MVN with an immediate
is smaller (and also faster).
Differential Revision: https://reviews.llvm.org/D57327
llvm-svn: 352737
And instead just generate a libcall. My motivating example on ARM was a simple:
shl i64 %A, %B
for which the code bloat is quite significant. For other targets that also
accept __int128/i128 such as AArch64 and X86, it is also beneficial for these
cases to generate a libcall when optimising for minsize. On these 64-bit targets,
the 64-bits shifts are of course unaffected because the SHIFT/SHIFT_PARTS
lowering operation action is not set to custom/expand.
Differential Revision: https://reviews.llvm.org/D57386
llvm-svn: 352736
This attempts to optimise negative values used in load/store operands
a little. We currently try to selct them as rr, materialising the
negative constant using a MOV/MVN pair. This instead selects ri with
an immediate of 0, forcing the add node to become a simpler sub.
Differential Revision: https://reviews.llvm.org/D57121
llvm-svn: 352475
As the codebase is now under the Apache 2.0 license with LLVM
Exceptions, and all Arm's contributions, past or future, are under that
new license, this Arm specific LICENSE.TXT is no longer needed, thus
removing it.
llvm-svn: 352376
Support G_SDIV, G_UDIV, G_SREM and G_UREM.
The only significant difference between arm and thumb mode is that we
need to check a different subtarget feature.
llvm-svn: 352346
Same as ARM.
On this occasion we split some of the instruction select tests for more
complicated instructions into their own files, so we can reuse them for
ARM and Thumb mode. Likewise for the legalizer tests.
llvm-svn: 352188
Currently in Arm code, we allocate LR first, under the assumption that
it needs to be saved anyway. Unfortunately this has the disadvantage
that it will require any instructions using it to be the longer thumb2
instructions, not the shorter thumb1 ones.
This switches the order when we are optimising for minsize, returning to
the default order so that more lower registers can be used. It can end
up requiring more pushed registers, but on average produces smaller code.
Differential Revision: https://reviews.llvm.org/D56008
llvm-svn: 351938
In the last stage of type promotion, we replace any zext that uses a
new trunc with the operand of the trunc. This is okay when we only
allowed one type to be optimised, but now its the case that the trunc
maybe needed to produce a more narrow type than the one we were
optimising for. So we need to check this before doing the replacement.
Differential Revision: https://reviews.llvm.org/D57041
llvm-svn: 351935
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.
X86 uses i8, but seemed to be hacking around this before.
llvm-svn: 351882
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
This patch may seem familiar... but my previous patch handled the
equivalent lsls+and, not this case. Usually instcombine puts the
"and" after the shift, so this case doesn't come up. However, if the
shift comes out of a GEP, it won't get canonicalized by instcombine,
and DAGCombine doesn't have an equivalent transform.
This also modifies isDesirableToCommuteWithShift to suppress DAGCombine
transforms which would make the overall code worse.
I'm not really happy adding a bunch of code to handle this, but it would
probably be tricky to substantially improve the behavior of DAGCombine
here.
Differential Revision: https://reviews.llvm.org/D56032
llvm-svn: 351776
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Allow varargs functions to be called, both in arm and thumb mode. This
boils down to choosing the correct calling convention, which we can
easily test by making sure arm_aapcscc is used instead of
arm_aapcs_vfpcc when the callee is variadic.
llvm-svn: 351424
Make it possible for TableGen to produce code for selecting MOVi32imm.
This allows reasonably recent ARM targets to select a lot more constants
than before.
We achieve this by adding GISelPredicateCode to arm_i32imm. It's
impossible to use the exact same code for both DAGISel and GlobalISel,
since one uses "Subtarget->" and the other "STI." to refer to the
subtarget. Moreover, in GlobalISel we don't have ready access to the
MachineFunction, so we need to add a bit of code for obtaining it from
the instruction that we're selecting. This is also the reason why it
needs to remain a PatLeaf instead of the more specific IntImmLeaf.
llvm-svn: 351056
Part of the effort to refactoring frame pointer code generation. We used
to use two function attributes "no-frame-pointer-elim" and
"no-frame-pointer-elim-non-leaf" to represent three kinds of frame
pointer usage: (all) frames use frame pointer, (non-leaf) frames use
frame pointer, (none) frame use frame pointer. This CL makes the idea
explicit by using only one enum function attribute "frame-pointer"
Option "-frame-pointer=" replaces "-disable-fp-elim" for tools such as
llc.
"no-frame-pointer-elim" and "no-frame-pointer-elim-non-leaf" are still
supported for easy migration to "frame-pointer".
tests are mostly updated with
// replace command line args ‘-disable-fp-elim=false’ with ‘-frame-pointer=none’
grep -iIrnl '\-disable-fp-elim=false' * | xargs sed -i '' -e "s/-disable-fp-elim=false/-frame-pointer=none/g"
// replace command line args ‘-disable-fp-elim’ with ‘-frame-pointer=all’
grep -iIrnl '\-disable-fp-elim' * | xargs sed -i '' -e "s/-disable-fp-elim/-frame-pointer=all/g"
Patch by Yuanfang Chen (tabloid.adroit)!
Differential Revision: https://reviews.llvm.org/D56351
llvm-svn: 351049