LLVM Value/Use does and MachineRegisterInfo/MachineOperand does.
This allows constant time for all uses list maintenance operations.
The idea was suggested by Chris. Reviewed by Evan and Dan.
Patch is tested and approved by Dan.
On normal use-cases compilation speed is not affected. On very big basic
blocks there are compilation speedups in the range of 15-20% or even better.
llvm-svn: 48822
other things, this allows the scheduler to unfold a load operand
in the 2008-01-08-SchedulerCrash.ll testcase, so it now successfully
clones the comparison to avoid a pushf+popf.
llvm-svn: 48777
flags. This is needed by the new legalize types
infrastructure which wants to expand the 64 bit
constants previously used to hold the flags on
32 bit machines. There are two functional changes:
(1) in LowerArguments, if a parameter has the zext
attribute set then that is marked in the flags;
before it was being ignored; (2) PPC had some bogus
code for handling two word arguments when using the
ELF 32 ABI, which was hard to convert because of
the bogusness. As suggested by the original author
(Nicolas Geoffray), I've disabled it for the moment.
Tested with "make check" and the Ada ACATS testsuite.
llvm-svn: 48640
This allows us to compile fp-stack-2results.ll into:
_test:
fldz
fld1
ret
which returns 1 in ST(0) and 0 in ST(1). This is needed for x86-64
_Complex long double.
llvm-svn: 48632
1. There is now a "PAListPtr" class, which is a smart pointer around
the underlying uniqued parameter attribute list object, and manages
its refcount. It is now impossible to mess up the refcount.
2. PAListPtr is now the main interface to the underlying object, and
the underlying object is now completely opaque.
3. Implementation details like SmallVector and FoldingSet are now no
longer part of the interface.
4. You can create a PAListPtr with an arbitrary sequence of
ParamAttrsWithIndex's, no need to make a SmallVector of a specific
size (you can just use an array or scalar or vector if you wish).
5. All the client code that had to check for a null pointer before
dereferencing the pointer is simplified to just access the
PAListPtr directly.
6. The interfaces for adding attrs to a list and removing them is a
bit simpler.
Phase #2 will rename some stuff (e.g. PAListPtr) and do other less
invasive changes.
llvm-svn: 48289
X86 lowering normalize vector 0 to v4i32. However DAGCombine can fold (sub x, x) -> 0 after legalization. It can create a zero vector of a type that's not expected (e.g. v8i16). We don't want to disable the optimization since leaving a (sub x, x) is really bad. Add isel patterns for other types of vector 0 to ensure correctness. It's highly unlikely to happen other than in bugpoint reduced test cases.
llvm-svn: 48279
that merely add passes. This allows them to be used with either
FunctionPassManager or PassManager, or even with a custom new
kind of pass manager.
llvm-svn: 48256
Change insert/extract subreg instructions to be able to be used in TableGen patterns.
Use the above features to reimplement an x86-64 pseudo instruction as a pattern.
llvm-svn: 48130
field to 32 bits, thus enabling correct handling of ByVal
structs bigger than 0x1ffff. Abstract interface a bit.
Fixes gcc.c-torture/execute/pr23135.c and
gcc.c-torture/execute/pr28982b.c in gcc testsuite (were ICE'ing
on ppc32, quietly producing wrong code on x86-32.)
llvm-svn: 48122
an RFP register class.
Teach ScheduleDAG how to handle CopyToReg with different src/dst
reg classes.
This allows us to compile trivial inline asms that expect stuff
on the top of x87-fp stack.
llvm-svn: 48107
into a vector of zeros or undef, and when the top part is obviously
zero, we can just use movd + shuffle. This allows us to compile
vec_set-B.ll into:
_test3:
movl $1234567, %eax
andl 4(%esp), %eax
movd %eax, %xmm0
ret
instead of:
_test3:
subl $28, %esp
movl $1234567, %eax
andl 32(%esp), %eax
movl %eax, (%esp)
movl $0, 4(%esp)
movq (%esp), %xmm0
addl $28, %esp
ret
llvm-svn: 48090
2) Don't try to insert an i64 value into the low part of a
vector with movq on an x86-32 target. This allows us to
compile:
__m128i doload64(short x) {return _mm_set_epi16(0,0,0,0,0,0,0,1);}
into:
_doload64:
movaps LCPI1_0, %xmm0
ret
instead of:
_doload64:
subl $28, %esp
movl $0, 4(%esp)
movl $1, (%esp)
movq (%esp), %xmm0
addl $28, %esp
ret
llvm-svn: 48057
For x86, if sse2 is available, it's not a good idea since cvtss2sd is slower than a movsd load and it prevents load folding. On x87, it's important to shrink fp constant since fldt is very expensive.
llvm-svn: 47931
stack slot and store if the SINT_TO_FP is actually legal. This allows
us to compile:
double a(double b) {return (unsigned)b;}
to:
_a:
cvttsd2siq %xmm0, %rax
movl %eax, %eax
cvtsi2sdq %rax, %xmm0
ret
instead of:
_a:
subq $8, %rsp
cvttsd2siq %xmm0, %rax
movl %eax, %eax
cvtsi2sdq %rax, %xmm0
addq $8, %rsp
ret
crazy.
llvm-svn: 47660
_test:
movl %edi, %eax
ret
instead of:
_test:
movl $4294967295, %ecx
movq %rdi, %rax
andq %rcx, %rax
ret
It would be great to write this as a Pat pattern that used subregs
instead of a 'pseudo' instruction, but I don't know how to do that
in td files.
llvm-svn: 47658
GOT-style position independent code. Before only tail calls to
protected/hidden functions within the same module were optimized.
Now all function calls are tail call optimized.
llvm-svn: 47594
calls. Before arguments that could overwrite each other were
explicitly lowered to a stack slot, not giving the register allocator
a chance to optimize. Now a sequence of copyto/copyfrom virtual
registers ensures that arguments are loaded in (virtual) registers
before they are lowered to the stack slot (and might overwrite each
other). Also parameter stack slots are marked mutable for
(potentially) tail calling functions.
llvm-svn: 47593
result into a MUL late in the X86 codegen process. ISD::MUL is
once again Legal on X86, so this is no longer needed. And, the
hack was suboptimal; see PR1874 for details.
llvm-svn: 47567
instead of with mmx registers. This horribleness is apparently
done by gcc to avoid having to insert emms in places that really
should have it. This is the second half of rdar://5741668.
llvm-svn: 47474
GCC apparently does this, and code depends on not having to do
emms when this happens. This is x86-64 only so far, second half
should handle x86-32.
rdar://5741668
llvm-svn: 47470
has plain one-result scalar integer multiplication instructions.
This avoids expanding such instructions into MUL_LOHI sequences that
must be special-cased at isel time, and avoids the problem with that
code that provented memory operands from being folded.
This fixes PR1874, addressesing the most common case. The uncommon
cases of optimizing multiply-high operations will require work
in DAGCombiner.
llvm-svn: 47277
the return value is zero-extended if it isn't
sign-extended. It may also be any-extended.
Also, if a floating point value was returned
in a larger floating point type, pass 1 as the
second operand to FP_ROUND, which tells it
that all the precision is in the original type.
I think this is right but I could be wrong.
Finally, when doing libcalls, set isZExt on
a parameter if it is "unsigned". Currently
isSExt is set when signed, and nothing is
set otherwise. This should be right for all
calls to standard library routines.
llvm-svn: 47122
1) ConstantFP is now expand by default
2) ConstantFP is not turned into TargetConstantFP during Legalize
if it is legal.
This allows ConstantFP to be handled like Constant, allowing for
targets that can encode FP immediates as MachineOperands.
As a bonus, fix up Itanium FP constants, which now correctly match,
and match more constants! Hooray.
llvm-svn: 47121
initializer problem, a minor tweak to the way the
DAGISelEmitter finds load/store nodes, and a renaming of the
new PseudoSourceValue objects.
llvm-svn: 46827
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
llvm-svn: 46659
in the backend. Introduce a new SDNode type, MemOperandSDNode, for
holding a MemOperand in the SelectionDAG IR, and add a MemOperand
list to MachineInstr, and code to manage them. Remove the offset
field from SrcValueSDNode; uses of SrcValueSDNode that were using
it are all all using MemOperandSDNode now.
Also, begin updating some getLoad and getStore calls to use the
PseudoSourceValue objects.
Most of this was written by Florian Brander, some
reorganization and updating to TOT by me.
llvm-svn: 46585
Note this solution might be somewhat fragile since ISD::LABEL may be used for other
purposes. If that ends up to be an issue, we may need to introduce a different node
for debug labels.
llvm-svn: 46571
This case returns the value in ST(0) and then has to convert it to an SSE
register. This causes significant codegen ugliness in some cases. For
example in the trivial fp-stack-direct-ret.ll testcase we used to generate:
_bar:
subl $28, %esp
call L_foo$stub
fstpl 16(%esp)
movsd 16(%esp), %xmm0
movsd %xmm0, 8(%esp)
fldl 8(%esp)
addl $28, %esp
ret
because we move the result of foo() into an XMM register, then have to
move it back for the return of bar.
Instead of hacking ever-more special cases into the call result lowering code
we take a much simpler approach: on x86-32, fp return is modeled as always
returning into an f80 register which is then truncated to f32 or f64 as needed.
Similarly for a result, we model it as an extension to f80 + return.
This exposes the truncate and extensions to the dag combiner, allowing target
independent code to hack on them, eliminating them in this case. This gives
us this code for the example above:
_bar:
subl $12, %esp
call L_foo$stub
addl $12, %esp
ret
The nasty aspect of this is that these conversions are not legal, but we want
the second pass of dag combiner (post-legalize) to be able to hack on them.
To handle this, we lie to legalize and say they are legal, then custom expand
them on entry to the isel pass (PreprocessForFPConvert). This is gross, but
less gross than the code it is replacing :)
This also allows us to generate better code in several other cases. For
example on fp-stack-ret-conv.ll, we now generate:
_test:
subl $12, %esp
call L_foo$stub
fstps 8(%esp)
movl 16(%esp), %eax
cvtss2sd 8(%esp), %xmm0
movsd %xmm0, (%eax)
addl $12, %esp
ret
where before we produced (incidentally, the old bad code is identical to what
gcc produces):
_test:
subl $12, %esp
call L_foo$stub
fstpl (%esp)
cvtsd2ss (%esp), %xmm0
cvtss2sd %xmm0, %xmm0
movl 16(%esp), %eax
movsd %xmm0, (%eax)
addl $12, %esp
ret
Note that we generate slightly worse code on pr1505b.ll due to a scheduling
deficiency that is unrelated to this patch.
llvm-svn: 46307
precision integers. This won't actually work
(and most of the code is dead) unless the new
legalization machinery is turned on. While
there, I rationalized the handling of i1, and
removed some bogus (and unused) sextload patterns.
For i1, this could result in microscopically
better code for some architectures (not X86).
It might also result in worse code if annotating
with AssertZExt nodes turns out to be more harmful
than helpful.
llvm-svn: 46280
parameters, since otherwise it won't be passed in
the right register. With this change trampolines
work on x86-64 (thanks to Luke Guest for providing
access to an x86-64 box).
llvm-svn: 46192
as weak globals rather than commons. While not wrong,
this change tickled a latent bug in Darwin's strip,
so revert it for now as a workaround.
llvm-svn: 46144
1. Legalize now always promotes truncstore of i1 to i8.
2. Remove patterns and gunk related to truncstore i1 from targets.
3. Rename the StoreXAction stuff to TruncStoreAction in TLI.
4. Make the TLI TruncStoreAction table a 2d table to handle from/to conversions.
5. Mark a wide variety of invalid truncstores as such in various targets, e.g.
X86 currently doesn't support truncstore of any of its integer types.
6. Add legalize support for truncstores with invalid value input types.
7. Add a dag combine transform to turn store(truncate) into truncstore when
safe.
The later allows us to compile CodeGen/X86/storetrunc-fp.ll to:
_foo:
fldt 20(%esp)
fldt 4(%esp)
faddp %st(1)
movl 36(%esp), %eax
fstps (%eax)
ret
instead of:
_foo:
subl $4, %esp
fldt 24(%esp)
fldt 8(%esp)
faddp %st(1)
fstps (%esp)
movl 40(%esp), %eax
movss (%esp), %xmm0
movss %xmm0, (%eax)
addl $4, %esp
ret
llvm-svn: 46140
and switch various codegen pieces and the X86 backend over
to using it.
* Add some comments to SelectionDAGNodes.h
* Introduce a second argument to FP_ROUND, which indicates
whether the FP_ROUND changes the value of its input. If
not it is safe to xform things like fp_extend(fp_round(x)) -> x.
llvm-svn: 46125
it should work, but I have no machine to test
it on. Committed because it will at least
cause no harm, and maybe someone can test it
for me!
llvm-svn: 46098
make the 'fp return in ST(0)' optimization smart enough to
look through token factor nodes. THis allows us to compile
testcases like CodeGen/X86/fp-stack-retcopy.ll into:
_carg:
subl $12, %esp
call L_foo$stub
fstpl (%esp)
fldl (%esp)
addl $12, %esp
ret
instead of:
_carg:
subl $28, %esp
call L_foo$stub
fstpl 16(%esp)
movsd 16(%esp), %xmm0
movsd %xmm0, 8(%esp)
fldl 8(%esp)
addl $28, %esp
ret
Still not optimal, but much better and this is a trivial patch. Fixing
the rest requires invasive surgery that is is not llvm 2.2 material.
llvm-svn: 46054
ShortenEHDataFor64Bits as a not-very-accurate
abstraction to cover all the changes in DwarfWriter.
Some cosmetic changes to Darwin assembly code for
gcc testsuite compatibility.
llvm-svn: 46029
an instruction kills a register or not. This is cheap and
easy to do now that instructions record this on their flags,
and this eliminates the second pass of LiveVariables from the
x86 backend. This speeds up a release llc by ~2.5%.
llvm-svn: 45955
commit all arguments where moved to the stack slot where they would
reside on a normal function call before the lowering to the tail call
stack slot. This was done to prevent arguments overwriting each other.
Now only arguments sourcing from a FORMAL_ARGUMENTS node or a
CopyFromReg node with virtual register (could also be a caller's
argument) are lowered indirectly.
--This line, and those below, will be ignored--
M X86/X86ISelLowering.cpp
M X86/README.txt
llvm-svn: 45867
both work right according to the new flags.
This removes the TII::isReallySideEffectFree predicate, and adds
TII::isInvariantLoad.
It removes NeverHasSideEffects+MayHaveSideEffects and adds
UnmodeledSideEffects as machine instr flags. Now the clients
can decide everything they need.
I think isRematerializable can be implemented in terms of the
flags we have now, though I will let others tackle that.
llvm-svn: 45843
x86 backend where instructions were not marked maystore/mayload, and perf issues where
instructions were not marked neverHasSideEffects. It would be really nice if we could
write patterns for copy instructions.
I have audited all the x86 instructions down to MOVDQAmr. The flags on others and on
other targets are probably not right in all cases, but no clients currently use this
info that are enabled by default.
llvm-svn: 45829
that it is cheap and efficient to get.
Move a variety of predicates from TargetInstrInfo into
TargetInstrDescriptor, which makes it much easier to query a predicate
when you don't have TII around. Now you can use MI->getDesc()->isBranch()
instead of going through TII, and this is much more efficient anyway. Not
all of the predicates have been moved over yet.
Update old code that used MI->getInstrDescriptor()->Flags to use the
new predicates in many places.
llvm-svn: 45674
unifying the copied algorithms and saving over 500 LOC. There should
be no functionality change, but please test on your favorite x86
target.
llvm-svn: 45627
checking that there was a from a global instead of a load from the stub
for a global, which is the one that's safe to hoist.
Consider this program:
volatile char G[100];
int B(char *F, int N) {
for (; N > 0; --N)
F[N] = G[N];
}
In static mode, we shouldn't be hoisting the load from G:
$ llc -relocation-model=static -o - a.bc -march=x86 -machine-licm
LBB1_1: # bb.preheader
leal -1(%eax), %edx
testl %edx, %edx
movl $1, %edx
cmovns %eax, %edx
xorl %esi, %esi
LBB1_2: # bb
movb _G(%eax), %bl
movb %bl, (%ecx,%eax)
llvm-svn: 45626
isReallySideEffectFree and isReallyTriviallyReMaterializable. Why is a load from
a global considered side-effect-free but not rematable?
llvm-svn: 45620
a header file from libcodegen. This violates a layering order: codegen
depends on target, not the other way around. The fix to this is to
split TII into two classes, TII and TargetInstrInfoImpl, which defines
stuff that depends on libcodegen. It is defined in libcodegen, where
the base is not.
llvm-svn: 45475
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
llvm-svn: 45467
e.g. MO.isMBB() instead of MO.isMachineBasicBlock(). I don't plan on
switching everything over, so new clients should just start using the
shorter names.
Remove old long accessors, switching everything over to use the short
accessor: getMachineBasicBlock() -> getMBB(),
getConstantPoolIndex() -> getIndex(), setMachineBasicBlock -> setMBB(), etc.
llvm-svn: 45464
- Eliminate the static "print" method for operands, moving it
into MachineOperand::print.
- Change various set* methods for register flags to take a bool
for the value to set it to. Remove unset* methods.
- Group methods more logically by operand flavor in MachineOperand.h
llvm-svn: 45461
function, then go ahead and hoist it out of the loop. This is the result:
$ cat a.c
volatile int G;
int A(int N) {
for (; N > 0; --N)
G++;
}
$ llc -o - -relocation-model=pic
_A:
...
LBB1_2: # bb
movl L_G$non_lazy_ptr-"L1$pb"(%eax), %esi
incl (%esi)
incl %edx
cmpl %ecx, %edx
jne LBB1_2 # bb
...
$ llc -o - -relocation-model=pic -machine-licm
_A:
...
movl L_G$non_lazy_ptr-"L1$pb"(%eax), %eax
LBB1_2: # bb
incl (%eax)
incl %edx
cmpl %ecx, %edx
jne LBB1_2 # bb
...
I'm limiting this to the MOV32rm x86 instruction for now.
llvm-svn: 45444
eliminating the llvm.x86.sse2.loadl.pd intrinsic?), one shuffle optzn
may be done (if shufps is better than pinsw, Evan, please review), and
we already know about LICM of simple instructions.
llvm-svn: 45407
based what flag to set on whether it was already marked as
"isRematerializable". If there was a further check to determine if it's "really"
rematerializable, then I marked it as "mayHaveSideEffects" and created a check
in the X86 back-end similar to the remat one.
llvm-svn: 45132
X86CodeEmitter.cpp:378: failed assertion `0 && "Immediate size not set!"'
I *think* this is right, but Evan, please verify. It also looks like
CMPSDrr and maybe others are missing this info. Evan, plz investigate.
llvm-svn: 45074