libclang. This includes:
- Cursor kind for function templates, with visitation logic
- Cursor kinds for template parameters, with visitation logic
- Visitation logic for template specialization types, qualified type
locations
- USR generation for function templates, template specialization
types, template parameter types.
Also happens to fix PR7804, which I tripped across while testing.
llvm-svn: 112604
conversion functions. This introduces new cursor kinds for these three
C++ entities, and reworks visitation of function declarations so that
we get type-source information for the names.
llvm-svn: 112600
declaration send or a variadic function call, collapse the ", ..."
into the parameter before it, so that we don't get a second
placeholder.
llvm-svn: 112579
instantiating the parameters. In a perfect world, this wouldn't
matter, and compilers are free to instantiate in any order they
want. However, every other compiler seems to instantiate the return
type first, and some code (in this case, Boost.Polygon) depends on
this and SFINAE to avoid instantiating something that shouldn't be
instantiated.
We could fight this battle, and insist that Clang is allowed to do
what it does, but it's not beneficial: it's more predictable to
instantiate this way, in source order. When we implement
late-specified return types, we'll need to instantiate the return type
last when it was late-specified, hence the FIXME.
We now compile Boost.Polygon properly.
llvm-svn: 112561
of that parameter, reduce the level by the number of active template
argument lists rather than by 1. The number of active template
argument lists is only > 1 when we have a class template partial
specialization of a member template of a class template that itself is
a member template of another class template.
... and Boost.MSM does this. Fixes PR7669.
llvm-svn: 112551
namely when the friend function prototype is already used
at the point of the template definition that is supposed
to inject the friend function. Testcase verifies four
scenarios.
I would like receive some code review for this.
llvm-svn: 112524
deduction where the parameter is a function reference, function
pointer, or member function pointer and the argument is an overloaded
function. Fixes <rdar://problem/8360106>, a template argument
deduction issue found by Boost.Filesystem.
llvm-svn: 112523
- Fixed a regression where assigning '0' would be reported
- Changed the way self assignments are filtered to allow constant testing
- Added a test case for assign ops
- Fixed one test case where a function pointer was not considered constant
- Fixed test cases relating to 0 assignment
llvm-svn: 112501
ASTContext::DeclAttrs. Otherwise, iterators will go stale when the
DenseMap reallocates, which can cause crashes when, e.g., looping over
the attributes in a template to instantiate them and add the results
to the instantiation of that template.
llvm-svn: 112488
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
the parameter names from the completions, e.g., provide
withString:(NSString *)
instead of
withString:(NSString *)string
since the parameter name is, by convention, redundant with the
selector piece that precedes it and the completions can get
unnecessarily long.
llvm-svn: 112456
of prioritizing just by initialization order, we bump the priority of
just the *next* initializer in the list, and leave everything else at
the normal priority. That way, if one intentionally skips the
initialization of a base or member (to get default initialization),
we'll still get ordered completion for the rest.
llvm-svn: 112454