This reverts r326965. It seems to have caused repeating test failures in
clang/test/Sema/diagnose_if.c on some buildbots.
I cannot reproduce the problem, and it's not immediately obvious what
the problem is, so let's revert to green.
llvm-svn: 326974
template parameter that is an expanded parameter pack, only substitute into the
current slice, not the entire pack.
This reduces the checking of N template template arguments for an expanded
parameter pack containing N parameters from quadratic time to linear time in
the length of the pack. This is important because one (and possibly the only?)
general technique for splitting a template parameter pack in linear time
depends on doing this.
llvm-svn: 326973
addElfSymbols and readJustSymbolsFile still has duplicate code, but
I didn't come up with a good idea to eliminate them. Since this patch
is an improvement, I'm sending this for review.
Differential Revision: https://reviews.llvm.org/D44187
llvm-svn: 326972
We already have a mangling for the __unaligned qualifier, we just have
to call Qualifiers::getFromCVRUMask instead of getFromCVRMask.
PR36638
llvm-svn: 326971
Summary:
Original change was D43313 (r326932) and reverted by r326953 because it
broke an LLD test and a windows build. The LLD test was already fixed in
lld commit r326944 (thanks maskray). This is the original change with
the windows build fixed.
llvm-svn: 326970
Summary:
Fixes an UB caught by sanitizer. The shift amount might be larger than 32 so the operand should be 1ULL.
In this patch, we replace the original expression with existing API with uint64_t type.
Reviewers: eli.friedman, rengolin
Reviewed By: rengolin
Subscribers: rengolin, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D44234
llvm-svn: 326969
These patterns weren't checking the alignment of the load, but were using the aligned instructions. This will cause a GP fault if the data isn't aligned.
I believe these were introduced in r312450.
llvm-svn: 326967
Summary:
Before this patch, Sema pre-allocated a FunctionScopeInfo and kept it in
the first, always present element of the FunctionScopes stack. This
meant that Sema::getCurFunction would return a pointer to this
pre-allocated object when parsing code outside a function body. This is
pretty much always a bug, so this patch moves the pre-allocated object
into a separate unique_ptr. This should make bugs like PR36536 a lot
more obvious.
As you can see from this patch, there were a number of places that
unconditionally assumed they were always called inside a function.
However, there are also many places that null checked the result of
getCurFunction(), so I think this is a reasonable direction.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44039
llvm-svn: 326965
We need to treat __unaligned like the other 'cvr' qualifiers when it
appears at the end of a function prototype. We weren't doing that in
some tentative parsing.
Fixes PR36638.
llvm-svn: 326962
No effective behavior change, just for cleanliness.
Analysis and typing by me, actual patch mostly by Reid.
Fixes PR36159.
https://reviews.llvm.org/D44223
llvm-svn: 326960
Currently on Windows (_MSC_VER) LLVMSymbolizer supports only Microsoft mangling.
This fix just explicitly uses itaniumDemangle when mangled name starts with _Z.
Differential Revision: https://reviews.llvm.org/D44192
llvm-svn: 326959
Summary:
This provides no measurable build speedup, but it reinstates an
optimization from r112038 that was lost in r179618. It requires moving
CapturedScopeInfo::Capture out to clang::sema, which might be too
general since we have plenty of other Capture records in BlockDecl and
other AST nodes.
Reviewers: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44221
llvm-svn: 326957
Since there is no instruction for integer vector division, factor in the
cost of singling out each element to be used with the scalar division
instruction.
Differential revision: https://reviews.llvm.org/D43974
llvm-svn: 326955
Proper modeling still remains to be done.
Note that BindingDecl#getHoldingVar() is almost always null, and this
should probably be handled by dealing with DecompositionDecl beforehand.
rdar://36852163
Differential Revision: https://reviews.llvm.org/D44183
llvm-svn: 326951
Summary:
This patch reverts the changes to libomptarget that were coupled with the changes to Clang code gen for data sharing using shared memory. A similar patch exists for Clang: D43625
Shared memory is meant to be used as an optimization on top of a more general scheme. So far we didn't have a global memory implementation ready so shared memory was a solution which applied to the current level of OpenMP complexity supported by trunk on GPU devices (due to the missing NVPTX backend patch this functionality has never been exercised). Now that we have a global memory solution this patch is "in the way" and needs to be removed (for now). This patch (or an equivalent version of it) will be put out for review once the global memory scheme is in place.
Reviewers: ABataev, grokos, carlo.bertolli, caomhin
Reviewed By: grokos
Subscribers: Hahnfeld, guansong, openmp-commits
Differential Revision: https://reviews.llvm.org/D43626
llvm-svn: 326950
The attached testcase started failing after the patch to define
isExtractSubvectorCheap with the following pattern mismatch:
ISEL: Starting pattern match
Initial Opcode index to 85068
Match failed at index 85076
LLVM ERROR: Cannot select: t47: v8i16 = insert_subvector undef:v8i16, t43, Constant:i64<0>
The code generated from llvm/lib/Target/AArch64/AArch64InstrInfo.td
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
is in ninja/lib/Target/AArch64/AArch64GenDAGISel.inc
At the location of the error it is:
/* 85076*/ OPC_CheckChild2Type, MVT::i32,
And it failed to match the type of operand 2.
Adding another def-pat for i64 fixes the failed def-pat error:
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i64 0)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
llvm-svn: 326949
Summary: Remove this scheme for now since it will be covered by another more generic scheme using global memory. This code will be worked into an optimization for the generic data sharing scheme. Removing this completely and then adding it via future patches will make all future data sharing patches cleaner.
Reviewers: ABataev, carlo.bertolli, caomhin
Reviewed By: ABataev
Subscribers: jholewinski, guansong, cfe-commits
Differential Revision: https://reviews.llvm.org/D43625
llvm-svn: 326948
The indirect function argument is in alloca address space in LLVM IR. However,
during Clang codegen for C++, the address space of indirect function argument
should match its address space in the source code, i.e., default addr space, even
for indirect argument. This is because destructor of the indirect argument may
be called in the caller function, and address of the indirect argument may be
taken, in either case the indirect function argument is expected to be in default
addr space, not the alloca address space.
Therefore, the indirect function argument should be mapped to the temp var
casted to default address space. The caller will cast it to alloca addr space
when passing it to the callee. In the callee, the argument is also casted to the
default address space and used.
CallArg is refactored to facilitate this fix.
Differential Revision: https://reviews.llvm.org/D34367
llvm-svn: 326946
Summary:
This patch fixes a bug where consecutive string literals in text protos were
put on the same line.
Reviewers: alexfh
Reviewed By: alexfh
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D44204
llvm-svn: 326945
Because of -ffunction-sections (and maybe other use cases I'm not aware of?) it
can occur that we need more than 0xfeff sections but ELF dosn't support that
many sections. To solve this problem SHN_XINDEX exists and with it come a whole
host of changes for section indexes everywhere. This change adds support for
those cases which should allow llvm-objcopy to copy binaries that have an
arbitrary number of sections.
Differential Revision: https://reviews.llvm.org/D42516
llvm-svn: 326940
OpenCL runtime tracks the invoke function emitted for
any block expression. Due to restrictions on blocks in
OpenCL (v2.0 s6.12.5), it is always possible to know the
block invoke function when emitting call of block expression
or __enqueue_kernel builtin functions. Since __enqueu_kernel
already has an argument for the invoke function, it is redundant
to have invoke function member in the llvm block literal structure.
This patch removes invoke function from the llvm block literal
structure. It also removes the bitcast of block invoke function
to the generic block literal type which is useless for OpenCL.
This will save some space for the kernel argument, and also
eliminate some store instructions.
Differential Revision: https://reviews.llvm.org/D43783
llvm-svn: 326937
This patch enhances DWARFDebugFrame with the capability of parsing and
printing DWARF expressions in CFI instructions. It also makes FDEs and
CIEs accessible to lib users, so they can process them in client tools
that rely on LLVM. To make it self-contained with a test case, it
teaches llvm-readobj to be able to dump EH frames and checks they are
correct in a unit test. The llvm-readobj code is Maksim Panchenko's work
(maksfb).
Reviewers: JDevlieghere, espindola
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D43313
llvm-svn: 326932
Summary: I did not put lang opt check in AvoidSpinlockCheck since OSSpinLock is not objc specific. We won't want to skip it when analyzing some C++ target used by other ObjC sources.
Reviewers: hokein, benhamilton
Reviewed By: benhamilton
Subscribers: klimek, cfe-commits
Differential Revision: https://reviews.llvm.org/D44174
llvm-svn: 326928
Summary:
This is PR36536.
There are a few ways to reach Sema::ActOnStartOfFunctionDef with a null
Decl. Currently, the parser continues on to attempt to parse the
statements in the function body without pushing a function scope or
declaration context. However, lots of statement parsing logic relies on
getCurFunction() returning something reasonable. It turns out that
getCurFunction() will never return null today because of an optimization
where Sema pre-allocates one FunctionScopeInfo and reuses it when
possible. This goes wrong when something inside the function body causes
us to push another function scope, such as requiring an implicit
definition of a special member function. Reusing the state clears it
out, which will lead to bugs. In PR36536, we found that the SwitchStack
gets unbalanced, because we push a switch, clear out the stack, and then
try to pop a switch that isn't there.
As a follow-up, I plan to move the pre-allocated FunctionScopeInfo out
of the FunctionScopes stack. This means the FunctionScopes stack will
often be empty, and callers of getCurFunction() will need to check for
null.
Reviewers: thakis
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43980
llvm-svn: 326926
Summary:
A desired property of the node order in Swing Modulo Scheduling is
that for nodes outside circuits the following holds: none of them is
scheduled after both a successor and a predecessor. We call
node orders that meet this property valid.
Although invalid node orders do not lead to the generation of incorrect
code, they can cause the pipeliner not being able to find a pipelined schedule
for arbitrary II. The reason is that after scheduling the successor and the
predecessor of a node, no room may be left to schedule the node itself.
For data flow graphs with 0-latency edges, the node ordering algorithm
of Swing Modulo Scheduling can generate such undesired invalid node orders.
This patch fixes that.
In the remainder of this commit message, I will give an example
demonstrating the issue, explain the fix, and explain how the the fix is tested.
Consider, as an example, the following data flow graph with all
edge latencies 0 and all edges pointing downward.
```
n0
/ \
n1 n3
\ /
n2
|
n4
```
Consider the implemented node order algorithm in top-down mode. In that mode,
the algorithm orders the nodes based on greatest Height and in case of equal
Height on lowest Movability. Finally, in case of equal Height and
Movability, given two nodes with an edge between them, the algorithm prefers
the source-node.
In the graph, for every node, the Height and Movability are equal to 0.
As will be explained below, the algorithm can generate the order n0, n1, n2, n3, n4.
So, node n3 is scheduled after its predecessor n0 and after its successor n2.
The reason that the algorithm can put node n2 in the order before node n3,
even though they have an edge between them in which node n3 is the source,
is the following: Suppose the algorithm has constructed the partial node
order n0, n1. Then, the nodes left to be ordered are nodes n2, n3, and n4. Suppose
that the while-loop in the implemented algorithm considers the nodes in
the order n4, n3, n2. The algorithm will start with node n4, and look for
more preferable nodes. First, node n4 will be compared with node n3. As the nodes
have equal Height and Movability and have no edge between them, the algorithm
will stick with node n4. Then node n4 is compared with node n2. Again the
Height and Movability are equal. But, this time, there is an edge between
the two nodes, and the algorithm will prefer the source node n2.
As there are no nodes left to compare, the algorithm will add node n2 to
the node order, yielding the partial node order n0, n1, n2. In this way node n2
arrives in the node-order before node n3.
To solve this, this patch introduces the ZeroLatencyHeight (ZLH) property
for nodes. It is defined as the maximum unweighted length of a path from the
given node to an arbitrary node in which each edge has latency 0.
So, ZLH(n0)=3, ZLH(n1)=ZLH(n3)=2, ZLH(n2)=1, and ZLH(n4)=0
In this patch, the preference for a greater ZeroLatencyHeight
is added in the top-down mode of the node ordering algorithm, after the
preference for a greater Height, and before the preference for a
lower Movability.
Therefore, the two allowed node-orders are n0, n1, n3, n2, n4 and n0, n3, n1, n2, n4.
Both of them are valid node orders.
In the same way, the bottom-up mode of the node ordering algorithm is adapted
by introducing the ZeroLatencyDepth property for nodes.
The patch is tested by adding extra checks to the following existing
lit-tests:
test/CodeGen/Hexagon/SUnit-boundary-prob.ll
test/CodeGen/Hexagon/frame-offset-overflow.ll
test/CodeGen/Hexagon/vect/vect-shuffle.ll
Before this patch, the pipeliner failed to pipeline the loops in these tests
due to invalid node-orders. After the patch, the pipeliner successfully
pipelines all these loops.
Reviewers: bcahoon
Reviewed By: bcahoon
Subscribers: Ayal, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D43620
llvm-svn: 326925