* Retain comments in the AST
* Serialize/deserialize comments
* Find comments attached to a certain Decl
* Expose raw comment text and SourceRange via libclang
llvm-svn: 158771
r158085 added some logic to track predefined declarations. The main reason we
had predefined declarations in the input was because the __builtin_va_list
declarations were injected into the preprocessor input. As of r158592 we
explicitly build the __builtin_va_list declarations. Therefore the predefined
decl tracking is no longer needed.
llvm-svn: 158732
The preprocessor's handling of diagnostic push/pops is stateful, so
encountering pragmas during a re-parse causes problems. HTMLRewrite
already filters out normal # directives including #pragma, so it's
clear it's not expected to be interpreting pragmas in this mode.
This fix adds a flag to Preprocessor to explicitly disable pragmas.
The "right" fix might be to separate pragma lexing from pragma
parsing so that we can throw away pragmas like we do preprocessor
directives, but right now it's important to get the fix in.
Note that this has nothing to do with the "hack" of re-using the
input preprocessor in HTMLRewrite. Even if we someday copy the
preprocessor instead of re-using it, the copy would (and should) include
the diagnostic level tables and have the same problems.
llvm-svn: 158214
In standard C since C89, a 'translation-unit' is syntactically defined to have
at least one "external-declaration", which is either a decl or a function
definition. In Clang the latter gives us a declaration as well.
The tricky bit about this warning is that our predefines can contain external
declarations (__builtin_va_list and the 128-bit integer types). Therefore our
AST parser now makes sure we have at least one declaration that doesn't come
from the predefines buffer.
Also, remove bogus warning about empty source files. This doesn't catch source
files that only contain comments, and never fired anyway because of our
predefines.
PR12665 and <rdar://problem/9165548>
llvm-svn: 158085
so we can destroy it even if it was constructed with "DelayInitialization = true",
and we didn't end up calling Preprocessor::Initialize.
Fixes crashes in rdar://11558355
llvm-svn: 157892
If we are pre-expanding a macro argument don't actually "activate"
the pragma at that point, activate the pragma whenever we encounter
it again in the token stream.
This ensures that we will activate it in the correct location
or that we will ignore it if it never enters the token stream, e.g:
\#define EMPTY(x)
\#define INACTIVE(x) EMPTY(x)
INACTIVE(_Pragma("clang diagnostic ignored \"-Wconversion\""))
This also fixes the crash in rdar://11168596.
llvm-svn: 153959
Enable incremental parsing by the Preprocessor,
where more code can be provided after an EOF.
It mainly prevents the tearing down of the topmost lexer.
To be used like this:
PP.enableIncrementalProcessing();
while (getMoreSource()) {
while (Parser.ParseTopLevelDecl(ADecl)) {...}
}
PP.enableIncrementalProcessing(false);
llvm-svn: 152914
Introduce PreprocessingRecord::rangeIntersectsConditionalDirective() which returns
true if a given range intersects with a conditional directive block.
llvm-svn: 152018
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006
- Move the offending methods out of line and fix transitive includers.
- This required changing an enum in the PPCallback API into an unsigned.
llvm-svn: 149782
for getting the name of the module file, unifying the code for
searching for a module with a given name (into lookupModule()) and
separating out the mapping to a module file (into
getModuleFileName()). No functionality change.
llvm-svn: 149197
modules. This leaves us without an explicit syntax for importing
modules in C/C++, because such a syntax needs to be discussed
first. In Objective-C/Objective-C++, the @import syntax is used to
import modules.
Note that, under -fmodules, C/C++ programs can import modules via the
#include mechanism when a module map is in place for that header. This
allows us to work with modules in C/C++ without committing to a syntax.
llvm-svn: 147467
within module maps, which will (eventually) be used to re-export a
module from another module. There are still some pieces missing,
however.
llvm-svn: 145665
(sub)module, all of the names may be hidden, just the macro names may
be exposed (for example, after the preprocessor has seen the import of
the module but the parser has not), or all of the names may be
exposed. Importing a module makes its names, and the names in any of
its non-explicit submodules, visible to name lookup (transitively).
This commit only introduces the notion of name visible and marks
modules and submodules as visible when they are imported. The actual
name-hiding logic in the AST reader will follow (along with test cases).
llvm-svn: 145586
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
which will do a binary search and return a pair of iterators
for preprocessed entities in the given source range.
Source ranges of preprocessed entities are stored twice currently in
the PCH/Module file but this will be fixed in a subsequent commit.
llvm-svn: 140058
keyword. We now handle this keyword in HandleIdentifier, making a note
for ourselves when we've seen the __import_module__ keyword so that
the next lexed token can trigger a module import (if needed). This
greatly simplifies Preprocessor::Lex(), and completely erases the 5.5%
-Eonly slowdown Argiris noted when I originally implemented
__import_module__. Big thanks to Argiris for noting that horrible
regression!
llvm-svn: 139265
Previously we would cut off the source file buffer at the code-completion
point; this impeded code-completion inside C++ inline methods and,
recently, with buffering ObjC methods.
Have the code-completion inserted into the source buffer so that it can
be buffered along with a method body. When we actually hit the code-completion
point the cut-off lexing or parsing.
Fixes rdar://10056932&8319466
llvm-svn: 139086
and language-specific initialization. Use this to allow ASTUnit to
create a preprocessor object *before* loading the AST file. No actual
functionality change.
llvm-svn: 138983
LangOptions, rather than making distinct copies of
LangOptions. Granted, LangOptions doesn't actually get modified, but
this will eventually make it easier to construct ASTContext and
Preprocessor before we know all of the LangOptions.
llvm-svn: 138959
existing practice with Python extension modules. Not that Python
extension modules should be using a double-underscored identifier
anyway, but...
llvm-svn: 138870
__import__ within the preprocessor, since the prior one foolishly
assumed that Preprocessor::Lex() was re-entrant. We now handle
__import__ at the top level (only), after macro expansion. This should
fix the buildbot failures.
llvm-svn: 138704
loads the named module. The syntax itself is intentionally hideous and
will be replaced at some later point with something more
palatable. For now, we're focusing on the semantics:
- Module imports are handled first by the preprocessor (to get macro
definitions) and then the same tokens are also handled by the parser
(to get declarations). If both happen (as in normal compilation),
the second one is redundant, because we currently have no way to
hide macros or declarations when loading a module. Chris gets credit
for this mad-but-workable scheme.
- The Preprocessor now holds on to a reference to a module loader,
which is responsible for loading named modules. CompilerInstance is
the only important module loader: it now knows how to create and
wire up an AST reader on demand to actually perform the module load.
- We search for modules in the include path, using the module name
with the suffix ".pcm" (precompiled module) for the file name. This
is a temporary hack; we hope to improve the situation in the
future.
llvm-svn: 138679
variants to 'expand'. This changed a couple of public APIs, including
one public type "MacroInstantiation" which is now "MacroExpansion". The
rest of the codebase was updated to reflect this, especially the
libclang code. Two of the C++ (and thus easily changed) libclang APIs
were updated as well because they pertained directly to the old
MacroInstantiation class.
No functionality changed.
llvm-svn: 135139
Previously macro expanded tokens were added to Preprocessor's bump allocator and never released,
even after the TokenLexer that were lexing them was finished, thus they were wasting memory.
A very "useful" boost library was causing clang to eat 1 GB just for the expanded macro tokens.
Introduce a special cache that works like a stack; a TokenLexer can add the macro expanded tokens
in the cache, and when it finishes, the tokens are removed from the end of the cache.
Now consumed memory by expanded tokens for that library is ~ 1.5 MB.
Part of rdar://9327049.
llvm-svn: 134105
CXTranslationUnit_NestedMacroInstantiations, which indicates whether
we want to see "nested" macro instantiations (e.g., those that occur
inside other macro instantiations) within the detailed preprocessing
record. Many clients (e.g., those that only care about visible tokens)
don't care about this information, and in code that uses preprocessor
metaprogramming, this information can have a very high cost.
Addresses <rdar://problem/9389320>.
llvm-svn: 130990
FileSystemOpts through a ton of apis, simplifying a lot of code.
This also fixes a latent bug in ASTUnit where it would invoke
methods on FileManager without creating one in some code paths
in cindextext.
llvm-svn: 120010
When -working-directory is passed in command line, file paths are resolved relative to the specified directory.
This helps both when using libclang (where we can't require the user to actually change the working directory)
and to help reproduce test cases when the reproduction work comes along.
--FileSystemOptions is introduced which controls how file system operations are performed (currently it just contains
the working directory value if set).
--FileSystemOptions are passed around to various interfaces that perform file operations.
--Opening & reading the content of files should be done only through FileManager. This is useful in general since
file operations will be abstracted in the future for the reproduction mechanism.
FileSystemOptions is independent of FileManager so that we can have multiple translation units sharing the same
FileManager but with different FileSystemOptions.
Addresses rdar://8583824.
llvm-svn: 118203
Now MICache is a linked list (per the FIXME), where we tradeoff between MacroInfo objects being in MICache
and MIChainHead. MacroInfo objects in the MICache chain are already "Destroy()'ed", so they can be reused. When
inserting into MICache, we need to remove them from the regular linked list so that they aren't destroyed more than
once.
llvm-svn: 116869
list of allocated MacroInfos. This requires only 1 extra pointer per MacroInfo object, and allows us to blow them
away in one place. This fixes an elusive memory leak with MacroInfos (whose exact location I couldn't still figure
out despite substantial digging).
Fixes <rdar://problem/8361834>.
llvm-svn: 116842
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
reparsing an ASTUnit. When saving a preamble, create a buffer larger
than the actual file we're working with but fill everything from the
end of the preamble to the end of the file with spaces (so the lexer
will quickly skip them). When we load the file, create a buffer of the
same size, filling it with the file and then spaces. Then, instruct
the lexer to start lexing after the preamble, therefore continuing the
parse from the spot where the preamble left off.
It's now possible to perform a simple preamble build + parse (+
reparse) with ASTUnit. However, one has to disable a bunch of checking
in the PCH reader to do so. That part isn't committed; it will likely
be handled with some other kind of flag (e.g., -fno-validate-pch).
As part of this, fix some issues with null termination of the memory
buffers created for the preamble; we were trying to explicitly
NULL-terminate them, even though they were also getting implicitly
NULL terminated, leading to excess warnings about NULL characters in
source files.
llvm-svn: 109445
When loading the PCH, IdentifierInfos that are associated with pragmas cause declarations that use these identifiers to be deserialized (e.g. the "clang" pragma causes the "clang" namespace to be loaded).
We can avoid this if we just use StringRefs for the pragmas.
As a bonus, since we don't have to create and pass IdentifierInfos, the pragma interfaces get a bit more simplified.
llvm-svn: 108237
eliminating the extra PopulatePreprocessingRecord object. This will
become useful once we start writing the preprocessing record to
precompiled headers.
llvm-svn: 98966
SourceManager's getBuffer() and, therefore, could fail, along with
Preprocessor::getSpelling(). Use the Invalid parameters in the literal
parsers (string, floating point, integral, character) to make them
robust against errors that stem from, e.g., PCH files that are not
consistent with the underlying file system.
I still need to audit every use caller to all of these routines, to
determine which ones need specific handling of error conditions.
llvm-svn: 98608
region of interest (if provided). Implement clang_getCursor() in terms
of this traversal rather than using the Index library; the unified
cursor visitor is more complete, and will be The Way Forward.
Minor other tweaks needed to make this work:
- Extend Preprocessor::getLocForEndOfToken() to accept an offset
from the end, making it easy to move to the last character in the
token (rather than just past the end of the token).
- In Lexer::MeasureTokenLength(), the length of whitespace is zero.
llvm-svn: 94200
definitions from a precompiled header. This ensures that
code-completion with macro names behaves the same with or without
precompiled headers.
llvm-svn: 92497
We creating and free thousands of MacroArgs objects (and the related
std::vectors hanging off them) for the testcase in PR5610 even though
there are only ~20 live at a time. This doesn't actually use the
cache yet.
llvm-svn: 91391
files with the contents of an arbitrary memory buffer. Use this new
functionality to drastically clean up the way in which we handle file
truncation for code-completion: all of the truncation/completion logic
is now encapsulated in the preprocessor where it belongs
(<rdar://problem/7434737>).
llvm-svn: 90300
a little fuzzy, but conceptually it's just uniquing the identifier.
Chris, please review. I debated splitting into const/non-const versions where
the const one propogated constness to the resulting IdentifierInfo*.
llvm-svn: 86106
only supporting a single stat cache. The immediate benefit of this
change is that we can now generate a PCH/AST file when including
another PCH file; in the future, the chain of stat caches will likely
be useful with multiple levels of PCH files.
llvm-svn: 84263
-code-completion-at=filename:line:column
which performs code completion at the specified location by truncating
the file at that position and enabling code completion. This approach
makes it possible to run multiple tests from a single test file, and
gives a more natural command-line interface.
llvm-svn: 82571
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
declaration in the AST.
The new ASTContext::getCommentForDecl function searches for a comment
that is attached to the given declaration, and returns that comment,
which may be composed of several comment blocks.
Comments are always available in an AST. However, to avoid harming
performance, we don't actually parse the comments. Rather, we keep the
source ranges of all of the comments within a large, sorted vector,
then lazily extract comments via a binary search in that vector only
when needed (which never occurs in a "normal" compile).
Comments are written to a precompiled header/AST file as a blob of
source ranges. That blob is only lazily loaded when one requests a
comment for a declaration (this never occurs in a "normal" compile).
The indexer testbed now supports comment extraction. When the
-point-at location points to a declaration with a Doxygen-style
comment, the indexer testbed prints the associated comment
block(s). See test/Index/comments.c for an example.
Some notes:
- We don't actually attempt to parse the comment blocks themselves,
beyond identifying them as Doxygen comment blocks to associate them
with a declaration.
- We won't find comment blocks that aren't adjacent to the
declaration, because we start our search based on the location of
the declaration.
- We don't go through the necessary hops to find, for example,
whether some redeclaration of a declaration has comments when our
current declaration does not. Similarly, we don't attempt to
associate a \param Foo marker in a function body comment with the
parameter named Foo (although that is certainly possible).
- Verification of my "no performance impact" claims is still "to be
done".
llvm-svn: 74704
registered when PCH wasn't being used. We should always install (in BuiltinInfo)
information about target-specific builtins, but we shouldn't register any builtin
identifier infos. This fixes the build of apps that use PCH and target specific
builtins together.
llvm-svn: 73492
This allows it to accurately measure tokens, so that we get:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~~^
instead of the woefully inferior:
t.cpp:8:13: error: unknown type name 'X'
static foo::X P;
~~~~ ^
Most of this is just plumbing to push the reference around.
llvm-svn: 69099
buffer generated for the current translation unit. If they are
different, complain and then ignore the PCH file. This effectively
checks for all compilation options that somehow would affect
preprocessor state (-D, -U, -include, the dreaded -imacros, etc.).
When we do accept the PCH file, throw away the contents of the
predefines buffer rather than parsing them, since all of the results
of that parsing are already stored in the PCH file. This eliminates
the ugliness with the redefinition of __builtin_va_list, among other
things.
llvm-svn: 68838
PCH. This works now, except for limitations not being able to do things
with identifiers. The basic example in the testcase works though.
llvm-svn: 68832
into clang-cc.cpp. This makes it so clang-cc constructs the *entire* predefines
buffer, not just half of it. A bonus of this is that we get to kill a copy
of DefineBuiltinMacro.
llvm-svn: 68830
improvement, source locations read from the PCH file will properly
resolve to the source files that were used to build the PCH file
itself.
Once we have the preprocessor state stored in the PCH file, source
locations that refer to macro instantiations that occur in the PCH
file should have the appropriate instantiation information.
llvm-svn: 68758
- Add -static-define option driver can use when __STATIC__ should be
defined (instead of __DYNAMIC__).
- Don't set __OPTIMIZE_SIZE__ on Os, __OPTIMIZE_SIZE__ is tied to Oz.
- Set __NO_INLINE__ following GCC 4.2.
- Set __GNU_GNU_INLINE__ or __GNU_STDC_INLINE__ following GCC 4.2.
- Set __EXCEPTIONS for Objective-C NonFragile ABI.
- Set __STRICT_ANSI__ for standard conforming modes.
- I added a clang style test case in utils for this, but its not
particularly portable and I don't think it belongs in the test
suite.
llvm-svn: 68621
- Add -pic-level clang-cc option to specify the value for the define,
updated driver to pass this.
- Added __pic__
- Added OBJC_ZEROCOST_EXCEPTIONS define while I was here (to match gcc).
llvm-svn: 68584
and are even set in C mode. As such, move them to Targets.cpp.
__OBJC_GC__ is also darwin specific, but seems reasonable to always
define it when in objc-gc mode.
This fixes rdar://6761450
llvm-svn: 68494
- Temporarily undef'ed __OBJC2__ in nonfragile objc abi mode
as it was forcing ivar synthesis in a certain project which clang
does not yet support.
llvm-svn: 67766
Add a #include directive around the command line buffer so that
diagnostics generated from -include directives get diagnostics
like:
In file included from <built-in>:98:
In file included from <command line>:3:
./t.h:2:1: warning: type specifier missing, defaults to 'int'
b;
^
llvm-svn: 67396
to being allocated from the same bumpptr that the MacroInfo objects
themselves are.
This speeds up -Eonly cocoa.h pth by ~4%, fsyntax-only is barely measurable.
llvm-svn: 65195
We now emit:
t.m:6:15: warning: field width should have type 'int', but argument has type 'unsigned int'
printf(STR, (unsigned) 1, 1);
^ ~~~~~~~~~~~~
t.m:3:18: note: instantiated from:
#define STR "abc%*ddef"
^
which has the correct location in the string literal in the note line.
llvm-svn: 64936
Now instead of just tracking the expansion history, also track the full
range of the macro that got replaced. For object-like macros, this doesn't
change anything. For _Pragma and function-like macros, this means we track
the locations of the ')'.
This is required for PR3579 because apparently GCC uses the line of the ')'
of a function-like macro as the location to expand __LINE__ to.
llvm-svn: 64601