is gradually becoming more data recursive, AnnotateTokensVisitor does its own recursive call
within the visitor that can still blow out the stack. This can potentially be reworked to avoid this,
but for now just do token annotation on a separate thread.
llvm-svn: 118783
diagnostic-capturing client lives as long as the ASTUnit itself
does. Otherwise, we can end up with crashes when we get a diagnostic
outside of parsing/code completion. The circumstances under which this
happen are really hard to reproduce, because a file needs to change
from under us.
llvm-svn: 118751
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
Take 2: this time, adjusted tests appropriately and used a "simple"
approach to the spelling location.
llvm-svn: 118495
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
llvm-svn: 118492
to deeply nested BinaryOperators. This is done by turning the explicit recursion into being data recursive.
Fixes: <rdar://problem/8289205>
llvm-svn: 118444
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
CXXConstructorExpr/CXXTemporaryObjectExpr references the constructor
it calls. Then, tweak clang_getCursor() to prefer such a call over a
type reference to the type being called.
llvm-svn: 118297
When -working-directory is passed in command line, file paths are resolved relative to the specified directory.
This helps both when using libclang (where we can't require the user to actually change the working directory)
and to help reproduce test cases when the reproduction work comes along.
--FileSystemOptions is introduced which controls how file system operations are performed (currently it just contains
the working directory value if set).
--FileSystemOptions are passed around to various interfaces that perform file operations.
--Opening & reading the content of files should be done only through FileManager. This is useful in general since
file operations will be abstracted in the future for the reproduction mechanism.
FileSystemOptions is independent of FileManager so that we can have multiple translation units sharing the same
FileManager but with different FileSystemOptions.
Addresses rdar://8583824.
llvm-svn: 118203
ensuring that they cover all of their child nodes. There's still a
clang_getCursor()-related issue with CXXFunctionalCastExprs with
CXXConstructExprs as children (see FIXME in the test case); I'll look
at that separately.
llvm-svn: 118132
within an @implementation, but we have no way to record that information in the AST.
This may cause CursorVisitor to miss these Decls when doing a AST walk.
Fixes <rdar://problem/8595462>.
llvm-svn: 118109
to recover some context that is currently not modeled directly in the AST. Currently VarDecl's cannot
properly determine their source range because they have no context on whether or not they appear in a DeclGroup.
For the meantime, this bandaid suffices in libclang since that is where the correct SourceRange is directly needed.
Fixes <rdar://problem/8595749>.
llvm-svn: 117973
entities in the preprocessing record. Previously, we would only end up
getting the first token of a preprocessing record annotated
correctly. For example, given
#include "foo.h"
we would only get the '#' annotated as an inclusion directive; the
'include' and '"foo.h"' tokens would be given the general 'processing
directive' annotation.
Now, we get proper annotations for entities in the preprocessing
record.
llvm-svn: 117001
inclusion directives, keeping track of every #include, #import,
etc. in the translation unit. We keep track of the source location and
kind of the inclusion, how the file name was spelled, and the
underlying file to which the inclusion resolved.
llvm-svn: 116952
declaring methods and when sending messages to them, by bringing all
of the selector into TypedCheck chunks in the completion result. This
way, we can improve the sorting of these results to account for the
full selector name rather than just the first chunk.
llvm-svn: 116746
The previous method used the DESTDIR environment variable at configure
time, but sometimes it is only available at install time. See PR8397.
llvm-svn: 116689
The problem was that text files were open in text mode and Microsoft implementation of fread and write will try to do nasty line-feed conversion which make the line position no longer valid. The fix is to read and write files in binary mode.
llvm-svn: 116286
diagnostics produced by the driver itself. Previously, we were
allowing these to either be dropped or to slip through to stderr.
Fixes <rdar://problem/7595339>.
llvm-svn: 116285
on the presence of a 'clang' executable. Simplify
CIndexer::getClangResourcesPath() a bit.
Patch up the CMake makefiles to install headers into two locations in
the build tree, for those silly cases where 'clang' will end up
looking into the wrong build directory for headers.
llvm-svn: 116260
emitting diagnostics in a binary form to be consumed by libclang,
since libclang no longer does any of its work out-of-process, making
this code dead. Besides, this stuff never worked at 100% anyway.
llvm-svn: 116250
clang_codeCompleteAt(). This uncovered a few issues with the latter:
- ASTUnit wasn't saving/restoring diagnostic state appropriately between
reparses and code completions.
- "Overload" completions weren't being passed through to the client
llvm-svn: 116241
improvements to the compiler and the introduction of crash recovery,
it no longer makes sense to allow this mode. Moreover, this eliminates
one use of the "clang" executable from within libclang; we'd like them
all to go away.
llvm-svn: 116207
following amusing sequence:
- AST writing schedules writing a type X* that it had never seen
before
- AST writing starts writing another declaration, ends up
deserializing X* from a prior AST file. Now we have two type IDs for
the same type!
- AST writer tries to write X*. It only has the lower-numbered ID
from the the prior AST file, so references to the higher-numbered ID
that was scheduled for writing go off into lalaland.
To fix this, keep the higher-numbered ID so we end up writing the type
twice. Since this issue occurs so rarely, and type records are
generally rather small, I deemed this better than the alternative: to
keep a separate mapping from the higher-numbered IDs to the
lower-numbered IDs, which we would end up having to check whenever we
want to deserialize any type.
Fixes <rdar://problem/8511624>, I think.
llvm-svn: 115647
produces a simple "display" name that captures the
arguments/parameters for a function, function template, class
template, or class template specialization.
llvm-svn: 115428
- Idempotent operations are on by default, to match --analyze in the driver.
- Integrated stats calculation based on parsing warnings emitted with the -analyzer-stats flag. The new -stats flag enables this.
- New -maxloop flag to pass down a maxloop value to the analyzer.
llvm-svn: 115123
This matches the behavior for setters.
Also pass the class extension to ProcessPropertyDecl as the lexical DeclContext, even when not redeclaring the @property.
This fixes the remaining issues in <rdar://problem/7410145>.
llvm-svn: 114477
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
I will not mix declaration and statements in C90.
llvm-svn: 113821
to an "overloaded" set of declarations. This cursor kind works for
unresolved references to functions/templates (e.g., a call within a
template), using declarations, and Objective-C class and protocol
forward declarations.
llvm-svn: 113805
currently expect that to be useful for plugins, and this is important for
startup performance:
--
ddunbar@lordcrumb:tmp$ touch empty.c
ddunbar@lordcrumb:tmp$ runN 100 ~/llvm.obj.64/Release/bin/clang -c empty.c
name avg min med max SD total
user 0.0054 0.0052 0.0054 0.0055 0.0000 0.5350
sys 0.0084 0.0090 0.0078 0.0087 0.0008 0.8390
wall 0.0149 0.0149 0.0149 0.0149 0.0003 1.4943
ddunbar@lordcrumb:tmp$ runN 100 ~/llvm.obj.64/Release/bin/clang -c empty.c
name avg min med max SD total
user 0.0036 0.0036 0.0036 0.0038 0.0000 0.3646
sys 0.0072 0.0071 0.0068 0.0070 0.0006 0.7158
wall 0.0123 0.0123 0.0122 0.0136 0.0003 1.2262
--
llvm-svn: 113638
constructor, in source order. Also introduces a new reference kind for
class members, which is used here (for member initializers) and will
also be used for designated initializers and offsetof.
llvm-svn: 113545
last of the C++-specific expressions where we have decent source
information in the AST already. In particular, various
object-construction expressions (CXXNewExpr, CXXTemporaryObjectExpr)
still have poor source-location information that needs to be addressed.
llvm-svn: 112981
cursors. Sadly, this visitation is a hack, because we don't have
proper source-location information for nested-name-specifiers in the
AST. It does improve on the status quo, however.
llvm-svn: 112837
clang_getSpecializedCursorTemplate(), which determines the template
(or member thereof) that the given cursor specializes or from which it
was instantiated. This routine can be used to establish a link between
templates and their instantiations/specializations.
llvm-svn: 112780
three different kinds of AST nodes to represent using declarations:
UsingDecl, UnresolvedUsingValueDecl, and
UnresolvedUsingTypenameDecl. These three are collapsed into a single
cursor kind for using declarations, since libclang clients don't need
the distinction.
Several related changes here:
- Cursor visitation of the three AST nodes for using declarations
- Proper source-range computation for these AST nodes
- Using declarations have no USRs, since they don't actually declare
any entities.
llvm-svn: 112730
in a few related ways:
- Don't recurse into instantiations of templates.
- Recurse into explicit specializations.
- Visit the template arguments of an explicit specialization or
explicit instantiation.
- Include template specialization arguments in the USRs for class
template specializations.
llvm-svn: 112720
suppressing USRs). Also, fix up the source location information for
using directives so that the declaration location refers to the
namespace name.
llvm-svn: 112693
with a new cursor kind for a reference to a namespace.
There's still some oddities in the source location information for
NamespaceAliasDecl that I'll address with a separate commit, so the
source locations displayed in the load-namespaces.cpp test will
change.
llvm-svn: 112676
determines the kind of declaration that would be generated if the
given template were instantiated. This allows a client to distinguish
among class/struct/union templates and function/member function/static
member function templates.
Also, teach clang_CXXMethod_isStatic() about function templates.
llvm-svn: 112655
template. Such cursors occur, for example, in template specialization
types such as vector<int>. Note that we do not handle the
super-interesting case where the template name is unresolved, e.g.,
within a template.
llvm-svn: 112636
libclang. This includes:
- Cursor kind for function templates, with visitation logic
- Cursor kinds for template parameters, with visitation logic
- Visitation logic for template specialization types, qualified type
locations
- USR generation for function templates, template specialization
types, template parameter types.
Also happens to fix PR7804, which I tripped across while testing.
llvm-svn: 112604
conversion functions. This introduces new cursor kinds for these three
C++ entities, and reworks visitation of function declarations so that
we get type-source information for the names.
llvm-svn: 112600
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
into the clients, e.g., the printing code-completion consumer and
c-index-test. Clients may want to re-sort the results anyway.
Provide a libclang function that sorts the results.
3rd try. How embarrassing.
llvm-svn: 112180
into the clients, e.g., the printing code-completion consumer and
c-index-test. Clients may want to re-sort the results anyway.
Provide a libclang function that sorts the results.
llvm-svn: 112149
r110903 introduced a dependency from Frontend to every library that
declared an Action by introducing Action references that previously
resided in the driver in the file ExecuteCompilerInvocation.cpp.
This patch moves ExecuteCompilerInvocation to a new library named
FrontendTool which is intended to bear these dependencies.
llvm-svn: 111873
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
sure to (1) actually use the remapped files we were given rather
than old data, and (2) keep the remapped files alive until the
code-completion results are destroyed. Big thanks to Daniel for the
test case.
llvm-svn: 111597