This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
When value of immediate in `mips.nori.b` is 255 (which has all ones in
binary form as 8bit integer) DAGCombiner and Legalizer would fall in an
infinite loop. DAGCombiner would try to simplify `or %value, -1` by
turning `%value` into UNDEF. Legalizer will turn it back into `Constant<0>`
which would then be again turned into UNDEF by DAGCombiner. To avoid this
loop we make UNDEF legal for MSA int types on Mips.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D67280
llvm-svn: 371607
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
The D45316 introduced the `shouldTransformMulToShiftsAddsSubs` function
to check that breaking down constant multiplications into a series
of shifts, adds, and subs is efficient. Unfortunately, this function
does not check maximum number of steps on all paths of the algorithm.
This patch fixes this bug.
Fix for PR41929.
Differential Revision: https://reviews.llvm.org/D62166
llvm-svn: 361606
On Mips32r2 bitcast can be expanded to two sw instructions and an ldc1
when using bitcast i64 to double or an sdc1 and two lw instructions when
using bitcast double to i64. By introducing custom lowering that uses
mtc1/mthc1 we can avoid excessive instructions.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D61069
llvm-svn: 359171
The `lowerMSASplatImm` function zero-extends `i32` immediates while
building constant. If target type is `i64`, negative immediate loses
the sign. As a result, for example `__builtin_msa_ldi_d(-1)` lowered
to series of instruction loads incorrect value 0xffffffff to the `$w0`
register instead of single `ldi.d $w0, -1` instruction.
The fix zero-extends unsigned immediates and signed-extend signed
immediates.
Differential Revision: http://reviews.llvm.org/D59884
llvm-svn: 357264
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch introduces a generic function to determine whether a given vector type is known to be a splat value for the specified demanded elements, recursing up the DAG looking for BUILD_VECTOR or VECTOR_SHUFFLE splat patterns.
It also keeps track of the elements that are known to be UNDEF - it returns true if all the demanded elements are UNDEF (as this may be useful under some circumstances), so this needs to be handled by the caller.
A wrapper variant is also provided that doesn't take the DemandedElts or UndefElts arguments for cases where we just want to know if the SDValue is a splat or not (with/without UNDEFS).
I had hoped to completely remove the X86 local version of this function, but I'm seeing some regressions in shift/rotate codegen that will take a little longer to fix and I hope to get this in sooner so I can continue work on PR38243 which needs more capable splat detection.
Differential Revision: https://reviews.llvm.org/D55426
llvm-svn: 348953
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
Summary: As it turns out, the lowering for the Mips16* family of target is the exact same thing as what the ops expands to, so the code handling them can be removed and the ops only enabled for the MipsSE* family of targets.
Reviewers: smaksimovic, atanasyan, abeserminji
Subscribers: sdardis, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D47703
llvm-svn: 334052
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Introduced a new pattern for matching splat.d explicitly.
Both splat.d and splati.d can now be generated from the @llvm.mips.splat.d
intrinsic depending on whether an immediate value has been passed.
Differential Revision: https://reviews.llvm.org/D45683
llvm-svn: 331771
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This patch makes compiler does not fuse fmul and fadd/fsub into
fmadd/fmsub by default. Instead, -fp-contract=fast option can
be used when such behavior is desired.
Differential Revision: https://reviews.llvm.org/D46057
llvm-svn: 331033
Previously, the MIPS backend would alwyas break down constant multiplications
into a series of shifts, adds, and subs. This patch changes that so the cost of
doing so is estimated.
The cost is estimated against worst case constant materialization and retrieving
the results from the HI/LO registers.
For cases where the value type of the multiplication is not legal, the cost of
legalization is estimated and is accounted for before performing the
optimization of breaking down the constant
This resolves PR36884.
Thanks to npl for reporting the issue!
Reviewers: abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D45316
llvm-svn: 330037
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
APInt is now used instead of uint64_t in function genConstMult() allowing
multiplication optimizations with constants of arbitrary length.
Patch by Milos Stojanovic.
Differential Revision: https://reviews.llvm.org/D38130
llvm-svn: 318296
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Introduced FSELECT node necesary when lowering ISD::SELECT
which has i32, f64, f64 as its operands.
SEL_D instruction required that its output and first operand
of a SELECT node, which it used, have matching types.
MTC1_D64 node introduced to aid FSELECT lowering.
This fixes machine verifier errors on following tests:
CodeGen/Mips/llvm-ir/select-dbl.ll
CodeGen/Mips/llvm-ir/select-flt.ll
CodeGen/Mips/select.ll
Differential Revision: https://reviews.llvm.org/D35408
llvm-svn: 308595
This change introduces additional machine instructions in functions
dealing with the expansion of msa pseudo f16 instructions due to
register classes being inappropriate when checked with machine
verifier.
Differential Revision: https://reviews.llvm.org/D34276
llvm-svn: 308301
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
The previous version of this patch was too aggressive in producing fused
integer multiple-addition instructions.
llvm-svn: 307906
Before this change, it was always the first element of a vector that got splatted since the lower 6 bits of vshf.d $wd were always zero for little endian.
Additionally, masking has been performed for vshf via which splat.d is created.
Vshf has a property where if its first operand's elements have either bit 6 or 7 set, destination element is set to zero.
Initially masked with 63 to avoid this property, which would result in generation of and.v + vshf.d in all cases.
Masking with one results in generating a single splati.d instruction when possible.
Differential Revision: https://reviews.llvm.org/D32216
llvm-svn: 306090
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
llvm-svn: 305389
Masked vectors which hold shift amounts when creating the following nodes:
ISD::SHL, ISD::SRL or ISD::SRA.
Instructions that use said nodes, which have had their arguments altered are
sll, srl, sra, bneg, bclr and bset.
For said instructions, the shift amount or the bit position that is
specified in the corresponding vector elements will be interpreted as the
shift amount/bit position modulo the size of the element in bits.
The problem lies in compiling with -O2 enabled, where the instructions for
formats .w and .d are not generated, but are instead optimized away.
In this case, having shift amounts that are either negative or greater than
the element bit size results in generation of incorrect results when
constant folding.
We remedy this by masking the operands for the nodes mentioned above before
actually creating them, so that the final result is correct before placed
into the constant pool.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D31331
llvm-svn: 300839
We have two cases here, the first one being the following instruction
selection from the builtin function:
bm(n)zi builtin -> vselect node -> bins[lr]i machine instruction
In case of bm(n)zi having an immediate which has either its high or low bits
set, a bins[lr] instruction can be selected through the selectVSplatMask[LR]
function. The function counts the number of bits set, and that value is
being passed to the bins[lr]i instruction as its immediate, which in turn
copies immediate modulo the size of the element in bits plus 1 as per specs,
where we get the off-by-one-error.
The other case is:
bins[lr]i -> vselect node -> bsel.v
In this case, a bsel.v instruction gets selected with a mask having one bit
less set than required.
Patch by Stefan Maksimovic.
Differential Revision: https://reviews.llvm.org/D30579
llvm-svn: 299768
This patch adds support for recognizing more patterns to match to DEXT and
CINS instructions.
It finds cases where multiple instructions could be replaced with a single
DEXT or CINS instruction.
For example, for the following:
define i64 @dext_and32(i64 zeroext %a) {
entry:
%and = and i64 %a, 4294967295
ret i64 %and
}
instead of generating:
0000000000000088 <dext_and32>:
88: 64010001 daddiu at,zero,1
8c: 0001083c dsll32 at,at,0x0
90: 6421ffff daddiu at,at,-1
94: 03e00008 jr ra
98: 00811024 and v0,a0,at
9c: 00000000 nop
the following gets generated:
0000000000000068 <dext_and32>:
68: 03e00008 jr ra
6c: 7c82f803 dext v0,a0,0x0,0x20
Cases that are covered:
DEXT:
1. and $src, mask where mask > 0xffff
2. zext $src zero extend from i32 to i64
CINS:
1. and (shl $src, pos), mask
2. shl (and $src, mask), pos
3. zext (shl $src, pos) zero extend from i32 to i64
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D30464
llvm-svn: 297832
This patches teaches the MIPS backend to accept more values for constant
splats. Previously, only 10 bit signed immediates or values that could be
loaded using an ldi.[bhwd] instruction would be acceptted. This patch relaxes
that constraint so that any constant value that be splatted is accepted.
As a result, the constant pool is used less for vector operations, and the
suite of bit manipulation instructions b(clr|set|neg)i can now be used with
the full range of their immediate operand.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30640
llvm-svn: 297457
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
The usage of some MIPS MSA instrinsics that took immediates could crash LLVM
during lowering. This patch addresses that behaviour. Crucially this patch
also makes the use of intrinsics with out of range immediates as producing an
internal error.
The ld,st instrinsics would trigger an assertion failure for MIPS64 as their
lowering would attempt to add an i32 offset to a i64 pointer.
Reviewers: vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D25438
llvm-svn: 291571
Previous the lowering of FILL_FW would use the MSA128W register class when
performing a vector splat. Instead it should be honouring -mno-odd-spreg and
only use the even registers when performing a splat from word to vector
register.
Logical follow-on from r230235.
This fixes PR/31369.
A previous commit was missing the test case and had another differential
in it.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D28373
llvm-svn: 291566
Previous the lowering of FILL_FW would use the MSA128W register class when
performing a vector splat. Instead it should be honouring -mno-odd-spreg and
only use the even registers when performing a splat from word to vector
register.
Logical follow-on from r230235.
This fixes PR/31369.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D28373
llvm-svn: 291556
The MIPS MSA ASE provides instructions to convert to and from half precision
floating point. This patch teaches the MIPS backend to treat f16 as a legal
type and how to promote such values to f32 for the usual set of operations.
As a result of this, the fexup[lr].w intrinsics no longer crash LLVM during
type legalization.
Reviewers: zoran.jovanvoic, vkalintiris
Differential Revision: https://reviews.llvm.org/D26398
llvm-svn: 287349
Disable tail calls while the remaining bugs are fixed. Enable only for tests.
Reviewers: vkalintiris
Differential Review: https://reviews.llvm.org/D24912
llvm-svn: 282487