I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
In testing, we've found yet another miscompile caused by the new tables.
And this one is even less clear how to fix (we could teach it to fold
a 16-bit load instead of the 32-bit load it wants, or block folding
entirely).
Also, the approach to excluding instructions seems increasingly to not
scale well.
I have left a more detailed analysis on the review log for the original
patch (https://reviews.llvm.org/D32684) along with suggested path
forward. I will land an additional test case that I wrote which covers
the code that was miscompiling (folding into the output of `pextrw`) in
a subsequent commit to keep this a pure revert.
For each commit reverted here, I've restricted the revert to the
non-test code touching the x86 fold table emission until the last commit
where I did revert the test updates. This means the *new* test cases
added for `insertps` and `xchg` remain untouched (and continue to pass).
Reverted commits:
r304540: [X86] Don't fold into memory operands into insertps in the ...
r304347: [TableGen] Adapt more places to getValueAsString now ...
r304163: [X86] Don't fold away the memory operand of an xchg.
r304123: Don't capture a temporary std::string in a StringRef.
r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..."
Original commit was in r304088, and after a string of fixes was reverted
previously in r304121 to fix build bots, and then re-landed in r304122.
llvm-svn: 304762
We currently generate BUILD_VECTOR as a tree of UNPCKL shuffles of the same type:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
The issue is because we are not placing sequential vector elements together early enough, we fail to recognise many combinable patterns - consecutive scalar loads, extractions etc.
Instead, this patch unpacks progressively larger sequential vector elements together:
e.g. for v4f32:
Step 1: unpcklps 0, 2 ==> X: <?, ?, 1, 0>
: unpcklps 1, 3 ==> Y: <?, ?, 3, 2>
Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
This does mean that we are creating UNPCKL shuffle of different value types, but the relevant combines that benefit from this are quite capable of handling the additional BITCASTs that are now included in the shuffle tree.
Differential Revision: https://reviews.llvm.org/D33864
llvm-svn: 304688
Since r288804, we try to lower build_vectors on AVX using broadcasts of
float/double. However, when we broadcast integer values that happen to
have a NaN float bitpattern, we lose the NaN payload, thereby changing
the integer value being broadcast.
This is caused by ConstantFP::get, to which we pass the splat i32 as
a float (by bitcasting it using bitsToFloat). ConstantFP::get takes
a double parameter, so we end up lossily converting a single-precision
NaN to double-precision.
Instead, avoid any kinds of conversions by directly building an APFloat
from the splatted APInt.
Note that this also fixes another piece of code (broadcast of
subvectors), that currently isn't susceptible to the same problem.
Also note that we could really just use APInt and ConstantInt
throughout: the constant pool type doesn't matter much. Still, for
consistency, use the appropriate type.
llvm-svn: 304590
This might give a few better opportunities to optimize these to memcpy
rather than loops - also a few minor cleanups (StringRef-izing,
templating (to avoid std::function indirection), etc).
The SmallVector::assign(iter, iter) could be improved with the use of
SFINAE, but the (iter, iter) ctor and append(iter, iter) need it to and
don't have it - so, workaround it for now rather than bothering with the
added complexity.
(also, as noted in the added FIXME, these assign ops could potentially
be optimized better at least for non-trivially-copyable types)
llvm-svn: 304566
Summary:
Add an early combine to match patterns such as:
(i16 bitcast (v16i1 x))
->
(i16 movmsk (v16i8 sext (v16i1 x)))
This combine needs to happen early enough before
type-legalization scalarizes the result of the setcc.
Reviewers: igorb, craig.topper, RKSimon
Subscribers: delena, llvm-commits
Differential Revision: https://reviews.llvm.org/D33311
llvm-svn: 304406
Summary:
This is a continuation of the work started in D29872 . Passing the carry down as a value rather than as a glue allows for further optimizations. Introducing setcccarry makes the use of addc/subc unecessary and we can start the removal process.
This patch only introduce the optimization strictly required to get the same level of optimization as was available before nothing more.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33374
llvm-svn: 304404
Summary: LiveRangeShrink pass moves instruction right after the definition with the same BB if the instruction and its operands all have more than one use. This pass is inexpensive and guarantees optimal live-range within BB.
Reviewers: davidxl, wmi, hfinkel, MatzeB, andreadb
Reviewed By: MatzeB, andreadb
Subscribers: hiraditya, jyknight, sanjoy, skatkov, gberry, jholewinski, qcolombet, javed.absar, krytarowski, atrick, spatel, RKSimon, andreadb, MatzeB, mehdi_amini, mgorny, efriedma, davide, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32563
llvm-svn: 304371
After transforming FP to ST registers:
- Do not add the ST register to the livein lists, they are reserved so
we do not need to track their liveness.
- Remove the FP registers from the livein lists, they don't have defs or
uses anymore and so are not live.
- (The setKillFlags() call is moved to an earlier place as it relies on
the FP registers still being present in the livein list.)
llvm-svn: 304342
This adds a callback to the LLVMTargetMachine that lets target indicate
that they do not pass the machine verifier checks in all cases yet.
This is intended to be a temporary measure while the targets are fixed
allowing us to enable the machine verifier by default with
EXPENSIVE_CHECKS enabled!
Differential Revision: https://reviews.llvm.org/D33696
llvm-svn: 304320
The frame pointer (when used as frame pointer) is a reserved register.
We do not track liveness of reserved registers and hence do not need to
add them to the basic block livein lists.
llvm-svn: 304274
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
This was reverted due to buildbot breakages and I was not familiar
with this code to investigate it. But while trying to get a
useful backtrace for the author, it turns out the fix was very
obvious. Resubmitting this patch as is, and will submit the
fix in a followup so that the fix is not hidden in the larger
CL.
llvm-svn: 304122
This reverts commit 28cb1003507f287726f43c771024a1dc102c45fe as well
as all subsequent followups. llvm-tblgen currently segfaults with
this change, and it seems it has been broken on the bots all
day with no fixes in preparation. See, for example:
http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/
llvm-svn: 304121
X86 backend holds huge tables in order to map between the register and memory forms of each instruction.
This TableGen Backend automatically generated all these tables with the appropriate flags for each entry.
Differential Revision: https://reviews.llvm.org/D32684
llvm-svn: 304088
Some register-register instructions can be encoded in 2 different ways, this happens when 2 register operands can be folded (separately).
For example if we look at the MOV8rr and MOV8rr_REV, both instructions perform exactly the same operation, but are encoded differently. Here is the relevant information about these instructions from Intel's 64-ia-32-architectures-software-developer-manual:
Opcode Instruction Op/En 64-Bit Mode Compat/Leg Mode Description
8A /r MOV r8,r/m8 RM Valid Valid Move r/m8 to r8.
88 /r MOV r/m8,r8 MR Valid Valid Move r8 to r/m8.
Here we can see that in order to enable the folding of the output and input registers, we had to define 2 "encodings", and as a result we got 2 move 8-bit register-register instructions.
In the X86 backend, we define both of these instructions, usually one has a regular name (MOV8rr) while the other has "_REV" suffix (MOV8rr_REV), must be marked with isCodeGenOnly flag and is not emitted from CodeGen.
Automatically generating the memory folding tables relies on matching encodings of instructions, but in these cases where we want to map both memory forms of the mov 8-bit (MOV8rm & MOV8mr) to MOV8rr (not to MOV8rr_REV) we have to somehow point from the MOV8rr_REV to the "regular" appropriate instruction which in this case is MOV8rr.
This field enable this "pointing" mechanism - which is used in the TableGen backend for generating memory folding tables.
Differential Revision: https://reviews.llvm.org/D32683
llvm-svn: 304087
AVX512_VPOPCNTDQ is a new feature set that was published by Intel.
The patch represents the LLVM side of the addition of two new intrinsic based instructions (vpopcntd and vpopcntq).
Differential Revision: https://reviews.llvm.org/D33169
llvm-svn: 303858
This patch defines the i1 type as illegal in the X86 backend for AVX512.
For DAG operations on <N x i1> types (build vector, extract vector element, ...) i8 is used, and should be truncated/extended.
This should produce better scalar code for i1 types since GPRs will be used instead of mask registers.
Differential Revision: https://reviews.llvm.org/D32273
llvm-svn: 303421
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
This also reverts follow-ups r303292 and r303298.
It broke some Chromium tests under MSan, and apparently also internal
tests at Google.
llvm-svn: 303369
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.
The patterns replaced here are:
* Passes handling a null TargetMachine call
`getAnalysisIfAvailable<TargetPassConfig>`.
* Passes not handling a null TargetMachine
`addRequired<TargetPassConfig>` and call
`getAnalysis<TargetPassConfig>`.
* MachineFunctionPasses now use MF.getTarget().
* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.
This fixes a crash when running `llc -start-before prologepilog`.
PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.
Related to PR30324.
Differential Revision: https://reviews.llvm.org/D33222
llvm-svn: 303360
According to Intel's Optimization Reference Manual for SNB+:
" For LEA instructions with three source operands and some specific situations, instruction latency has increased to 3 cycles, and must
dispatch via port 1:
- LEA that has all three source operands: base, index, and offset
- LEA that uses base and index registers where the base is EBP, RBP,or R13
- LEA that uses RIP relative addressing mode
- LEA that uses 16-bit addressing mode "
This patch currently handles the first 2 cases only.
Differential Revision: https://reviews.llvm.org/D32277
llvm-svn: 303333
- '-verify-mahcineinstrs' starts to complain allocatable live-in physical
registers on non-entry or non-landing-pad basic blocks.
- Refactor the XBEGIN translation to define EAX on a dedicated fallback code
path due to XABORT. Add a pseudo instruction to define EAX explicitly to
avoid add physical register live-in.
Differential Revision: https://reviews.llvm.org/D33168
llvm-svn: 303306
Summary: Moving LiveRangeShrink to x86 as this pass is mostly useful for archtectures with great register pressure.
Reviewers: MatzeB, qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, jyknight, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33294
llvm-svn: 303292