statepoint instruction uses tied-def registers to represent live gc value which
is use and def at the same time on a call.
At the same time invoke statepoint instruction is a last split point which can throw and
jump to landing pad.
As a result we have instructon which is last split point with tied-defs registers and
we need to teach Greedy RA to work with it.
The option -use-registers-for-gc-values-in-landing-pad controls whether statepoint lowering
will generate tied-defs for invoke statepoint and is off by default now.
To resolve all issues the following changes has been done.
1) Last Split point for invoke statepoint should be statepoint itself
If statepoint has a def it is a relocated gc pointer and it should be available in landing pad.
So we cannot split interval after statepoint at end of basic block.
2) Do not split interval on tied-def
If end of interval for overlap utility is a use which has tied-def we
should not split interval on this instruction due to in this case use
and def may have different registers and it breaks tied-def property.
3) Take into account Last Split Point for enterIntvAtEnd
If the use after Last Split Point is a def so it should be tied-def and
we can take the def of the tied-use as ParentVNI and thus
tied-use and tied-def will be live in resulting interval.
4) Handle the case when def is after LIP in InlineSpiller
If def of LI is after last insertion point of basic block we cannot hoist in this BB.
The example of such instruction is invoke statepoint where def represents the
relocated live gc pointer. Invoke is a last insertion point and its def is located after it.
In this case there is no place to insert spill and we bail out.
5) Fix removeBackCopies to account empty copies
RegAssignMap cannot hold empty interval, so do not set stop
to kill value if it produces empty interval.
This can happen if we remove back-copy and right before that we have another
back-copy.
For example, for parent %0 we can get
%1 = COPY %0
%2 = COPY %0
while we removing %2 we cannot set kill for %1 due to its empty.
6) Do not hoist copy to BB if its def is after LSP
If the parent def is a LastSplitPoint or later we cannot hoist copy to this basic block
because inserted copy (or re-materialization) will be located before the def.
All parts have been reviewed separately as follows:
https://reviews.llvm.org/D100747https://reviews.llvm.org/D100748https://reviews.llvm.org/D100750https://reviews.llvm.org/D100927https://reviews.llvm.org/D100945https://reviews.llvm.org/D101028
Reviewers: reames, rnk, void, MatzeB, wmi, qcolombet
Reviewed By: reames, qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D101150
Pseudo probe are currently given a slot index like other regular instructions. This affects register pressure and lifetime weight computation because of enlarged lifetime length with pseudo probe instructions. As a consequence, program could get different code generated w/ and w/o pseudo probes. I'm closing the gap by excluding pseudo probes from stack index and downstream register allocation related passes.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100334
VirtRegAuxInfo is an extensibility point, so the register allocator's
decision on which implementation to use should be communicated to the
other users - namely, LiveRangeEdit.
Differential Revision: https://reviews.llvm.org/D96898
Return the best covering index, and additional needed to complete the
mask. This logically belongs in TargetRegisterInfo, although I ended
up not needing it for why I originally split this out.
Following on from D87757 "[SplitKit] Only copy live lanes", it is
possible to split a live range at a point when none of its subranges
are live. This patch handles that case by inserting an implicit def
of the superreg.
Patch by Quentin Colombet!
Differential Revision: https://reviews.llvm.org/D88397
Following on from D87757 "[SplitKit] Only copy live lanes", in
SplitEditor::addDeadDef, when we're checking whether the parent live
interval has a subrange defining the same lanes, tolerate the case
where the parent subrange defines a superset of the lanes. This can
happen when the child subrange comes from SplitEditor::buildCopy
decomposing a partial copy into a sequence of subreg copies that cover
the required lanes.
Differential Revision: https://reviews.llvm.org/D88020
When splitting a live interval with subranges, only insert copies for
the lanes that are live at the point of the split. This avoids some
unnecessary copies and fixes a problem where copying dead lanes was
generating MIR that failed verification. The test case for this is
test/CodeGen/AMDGPU/splitkit-copy-live-lanes.mir.
Without this fix, some earlier live range splitting would create %430:
%430 [256r,848r:0)[848r,2584r:1) 0@256r 1@848r L0000000000000003 [848r,2584r:0) 0@848r L0000000000000030 [256r,2584r:0) 0@256r weight:1.480938e-03
...
256B undef %430.sub2:vreg_128 = V_LSHRREV_B32_e32 16, %20.sub1:vreg_128, implicit $exec
...
848B %430.sub0:vreg_128 = V_AND_B32_e32 %92:sreg_32, %20.sub1:vreg_128, implicit $exec
...
2584B %431:vreg_128 = COPY %430:vreg_128
Then RAGreedy::tryLocalSplit would split %430 into %432 and %433 just
before 848B giving:
%432 [256r,844r:0) 0@256r L0000000000000030 [256r,844r:0) 0@256r weight:3.066802e-03
%433 [844r,848r:0)[848r,2584r:1) 0@844r 1@848r L0000000000000030 [844r,2584r:0) 0@844r L0000000000000003 [844r,844d:0)[848r,2584r:1) 0@844r 1@848r weight:2.831776e-03
...
256B undef %432.sub2:vreg_128 = V_LSHRREV_B32_e32 16, %20.sub1:vreg_128, implicit $exec
...
844B undef %433.sub0:vreg_128 = COPY %432.sub0:vreg_128 {
internal %433.sub2:vreg_128 = COPY %432.sub2:vreg_128
848B }
%433.sub0:vreg_128 = V_AND_B32_e32 %92:sreg_32, %20.sub1:vreg_128, implicit $exec
...
2584B %431:vreg_128 = COPY %433:vreg_128
Note that the copy from %432 to %433 at 844B is a curious
bundle-without-a-BUNDLE-instruction that SplitKit creates deliberately,
and it includes a copy of .sub0 which is not live at this point, and
that causes it to fail verification:
*** Bad machine code: No live subrange at use ***
- function: zextload_global_v64i16_to_v64i64
- basic block: %bb.0 (0x7faed48) [0B;2848B)
- instruction: 844B undef %433.sub0:vreg_128 = COPY %432.sub0:vreg_128
- operand 1: %432.sub0:vreg_128
- interval: %432 [256r,844r:0) 0@256r L0000000000000030 [256r,844r:0) 0@256r weight:3.066802e-03
- at: 844B
Using real bundles with a BUNDLE instruction might also fix this
problem, but the current fix is less invasive and also avoids some
unnecessary copies.
https://bugs.llvm.org/show_bug.cgi?id=47492
Differential Revision: https://reviews.llvm.org/D87757
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
Summary:
Refactor LiveRangeCalc such that it is now split into two classes
The objective is to split all the "register specific" logic away
from LiveRangeCalc.
The two new classes created are:
- LiveRangeCalc - is meant as a generic class to compute and modify
live ranges in a generic way. This class should deal only with
SlotIndices and VNInfo objects.
- LiveIntervalCals - is meant to be equivalent to the old LiveRangeCalc.
It computes the liveness virtual registers tracked by a LiveInterval
object.
With this refactoring LiveRangeCalc can be used to implement tracking of
liveness of LiveRanges that represent other things than just registers.
Subscribers: MatzeB, qcolombet, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76584
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
When splitting a subrange we end up with two different subranges covering
two different, non overlapping, lanes.
As part of this splitting the VNIs of the original live-range need
to be dispatched to the subranges according to which lanes they are
actually defining.
Prior to this patch we were assuming that all values were defining
all lanes. This was wrong as demonstrated by llvm.org/PR40835.
Differential Revision: https://reviews.llvm.org/D59731
llvm-svn: 357032
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
Example situation:
```
BB0:
%0 = ...
use %0
; ...
condjump BB1
jmp BB2
BB1:
%0 = ... ; rematerialized def from above (from earlier split step)
jmp BB2
BB2:
; ...
use %0
```
%0 will have a live interval with 3 value numbers (for the BB0, BB1 and
BB2 parts). Now SplitKit tries and succeeds in rematerializing the value
number in BB2 (This only works because it is a secondary split so
SplitKit is can trace this back to a single original def).
We need to recompute all live ranges affected by a value number that we
rematerialize. The case that we missed before is that when the value
that is rematerialized is at a join (Phi VNI) then we also have to
recompute liveness for the predecessor VNIs.
rdar://35699130
Differential Revision: https://reviews.llvm.org/D42667
llvm-svn: 324039
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
Fix thinko/typo in subreg aware liverange splitting logic. I'm not sure
how to write a proper testcase for this. The original problem only
happens on an out-of-tree target. Forcing subreg enabled targets to
spill and split in a predictable way is near impossible.
llvm-svn: 305228
Fix two problems related to r298025:
- SplitKit would create duplicate VNIs in some cases leading to crashs
when hoisting copies.
- VirtRegMap could fail expanding copies at the beginning of a basic
block.
This fixes http://llvm.org/PR32353
llvm-svn: 298448
- This fixes a bug where subregister incompatible with the vregs register
class where used.
- Implement the case where multiple copies are necessary to cover a
given lanemask.
Differential Revision: https://reviews.llvm.org/D30438
llvm-svn: 298025
SplitEditor::defFromParent() can create a register copy.
If register is a tuple of other registers and not all lanes are used
a copy will be done on a full tuple regardless. Later register unit
for an unused lane will be considered free and another overlapping
register tuple can be assigned to a different value even though first
register is live at that point. That is because interference only look at
liveness info, while full register copy clobbers all lanes, even unused.
This patch fixes copy to only cover used lanes.
Differential Revision: https://reviews.llvm.org/D29105
llvm-svn: 293728
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
The function extendPHIRanges checks the main range of the original live
interval, even when dealing with a subrange. This could also lead to an
assert when the subrange is not live at the extension point, but the
main range is. To avoid this, check the corresponding subrange of the
original live range, instead of always checking the main range.
Review (as a part of a bigger set of changes):
https://reviews.llvm.org/D26359
llvm-svn: 287571
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
Subregister definitions are considered uses for the purpose of tracking
liveness of the whole register. At the same time, when calculating live
interval subranges, subregister defs should not be treated as uses.
Differential Revision: https://reviews.llvm.org/D24190
llvm-svn: 280532
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625