functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
operators. For example, one can now write "x + y" where x or y is a
class or enumeration type, and Clang will perform overload resolution
for "+" based on the overloaded operators it finds.
The other kinds of overloadable operators in C++ will follow this same
approach.
Three major issues remain:
1) We don't find member operators
2) Since we don't have user-defined conversion operators, we can't
call any of the built-in overloaded operators in C++ [over.built].
3) Once we've done the semantic checks, we drop the overloaded
operator on the floor; it doesn't get into the AST at all.
llvm-svn: 58821
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
llvm-svn: 58817
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
llvm-svn: 58767
duplication in the handling of copy-initialization by constructor,
which occurs both for initialization of a declaration and for
overloading. The initialization code is due for some refactoring.
llvm-svn: 58756
cope with the case where a user-defined conversion is actually a copy
construction, and therefore can be compared against other standard
conversion sequences. While I called this a hack before, now I'm
convinced that it's the right way to go.
Compare overloads based on derived-to-base conversions that invoke
copy constructors.
Suppress user-defined conversions when attempting to call a
user-defined conversion.
llvm-svn: 58629
when appropriate.
Conversions for class types now make use of copy constructors. I've
replaced the egregious hack allowing class-to-class conversions with a
slightly less egregious hack calling these conversions standard
conversions (for overloading reasons).
llvm-svn: 58622
conversions.
Notes:
- Overload resolution for converting constructors need to prohibit
user-defined conversions (hence, the test isn't -verify safe yet).
- We still use hacks for conversions from a class type to itself.
This will be the case until we start implicitly declaring the appropriate
special member functions. (That's next on my list)
llvm-svn: 58513
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
llvm-svn: 58499
ImplicitConversionSequence and, when doing so, following the specific
rules of [over.best.ics].
The computation of the implicit conversion sequences implements C++
[over.ics.ref], but we do not (yet) have ranking for implicit
conversion sequences that use reference binding.
llvm-svn: 58357
of copy initialization. Other pieces of the puzzle:
- Try/Perform-ImplicitConversion now handles implicit conversions
that don't involve references.
- Try/Perform-CopyInitialization uses
CheckSingleAssignmentConstraints for C. PerformCopyInitialization
is now used for all argument passing and returning values from a
function.
- Diagnose errors with declaring references and const values without
an initializer. (Uses a new Action callback, ActOnUninitializedDecl).
We do not yet have implicit conversion sequences for reference
binding, which means that we don't have any overloading support for
reference parameters yet.
llvm-svn: 58353
- CastExpr is the root of all casts
- ImplicitCastExpr is (still) used for all explicit casts
- ExplicitCastExpr is now the root of all *explicit* casts
- ExplicitCCastExpr (new name needed!?) is a C-style cast in C or C++
- CXXFunctionalCastExpr inherits from ExplicitCastExpr
- CXXNamedCastExpr inherits from ExplicitCastExpr and is the root of all
of the C++ named cast expression types (static_cast, dynamic_cast, etc.)
- Added classes CXXStaticCastExpr, CXXDynamicCastExpr,
CXXReinterpretCastExpr, and CXXConstCastExpr to
Also, fixed returned-stack-addr.cpp, which broke once when we fixed
reinterpret_cast to diagnose double->int* conversions and again when
we eliminated implicit conversions to reference types. The fix is in
both testcase and SemaChecking.cpp.
Most of this patch is simply support for the renaming. There's very
little actual change in semantics.
llvm-svn: 58264
conversions.
Added PerformImplicitConversion, which follows an implicit conversion sequence
computed by TryCopyInitialization and actually performs the implicit
conversions, including the extra check for ambiguity mentioned above.
llvm-svn: 58071
pointer-to-base. Also, add overload ranking for pointer conversions
(for both pointer-to-void and derived-to-base pointer conversions).
Note that we do not yet diagnose derived-to-base pointer conversion
errors that stem from ambiguous or inacessible base classes. These
aren't handled during overload resolution; rather, when the conversion
is actually used we go ahead and diagnose the error.
llvm-svn: 58017
conversions (e.g., comparing int* -> const int* against
int* -> const volatile int*); see C++ 13.3.3.2p3 bullet 3.
Add Sema::UnwrapSimilarPointerTypes to simplify the control flow of
IsQualificationConversion and CompareQualificationConversion (and fix
the handling of the int* -> volatile int* conversion in the former).
llvm-svn: 57978
Changes:
- Sema::IsQualificationConversion determines whether we have a qualification
conversion.
- Sema::CheckSingleAssignment constraints now follows the C++ rules in C++,
performing an implicit conversion from the right-hand side to the type of
the left-hand side rather than checking based on the C notion of
"compatibility". We now rely on the implicit-conversion code to
determine whether the conversion can happen or
not. Sema::TryCopyInitialization has an ugly reference-related
hack to cope with the initialization of references, for now.
- When building DeclRefExprs, strip away the reference type, since
there are no expressions whose type is a reference. We'll need to
do this throughout Sema.
- Expr::isLvalue now permits functions to be lvalues in C++ (but not
in C).
llvm-svn: 57935
Fix <rdar://problem/6265257> warnings for ambiguous message send swamp other warnings.
Reworked Sema::MatchTwoMethodDeclarations() to optionally match based on method size and alignment (the default in GCC). Changed Sema::LookupInstanceMethodInGlobalPool() to use this feature.
Added -Wno-struct-selector-match to driver, however didn't hook it up yet. Added a FIXME that says this.
llvm-svn: 57898
Note: One day, we should consider moving the actual diags to ObjCQualifiedIdTypesAreCompatible(), since it has more information on the actual problem. GCC currently emits slightly more instructive errors for some cases involving protocols. I added a FIXME to the code.
llvm-svn: 57529
- Follows the MSVC (original) implementation, including support of
pack(show) (useful for testing).
- Implements support for named pack records which gcc seems to
ignore (or implements incorrectly).
- Not currently wired to anything, only functionality change is the
type checking of the pragma.
llvm-svn: 57476
This is how this kind of initializers appear in the AST:
-The Init expression of the VarDecl is a functional type construction (of the VarDecl's type).
-The new VarDecl::hasCXXDirectInitializer() returns true.
e.g, for "int x(1);":
-VarDecl 'x' has Init with expression "int(1)" (CXXFunctionalCastExpr).
-hasCXXDirectInitializer() of VarDecl 'x' returns true.
A major benefit is that clients that don't particularly care about which exactly form was the initializer can handle both cases without special case code.
Note that codegening works now for "int x(1);" without any changes to CodeGen.
llvm-svn: 57178
Long standing bug in Sema::ActOnInstanceMessage(). We now warn when messaging an "id" with multiple method signatures in scope. The diags are a little verbose, however they can be streamlined if necessary.
llvm-svn: 56843
- readonly and readwrite are mutually exclusive.
- assign, copy, and retain are mutually exclusive.
- copy and retain are invalid on non-object types.
- Warn about using default 'assign' property on object types
(attempting to follow gcc behavior).
llvm-svn: 56507