This reverts commit 4986d5eaff with
proper patches to CMakeLists.txt:
- Add MLIRAsync as a dependency to MLIRAsyncToLLVM
- Add Coroutines as a dependency to MLIRExecutionEngine
Lower from Async dialect to LLVM by converting async regions attached to `async.execute` operations into LLVM coroutines (https://llvm.org/docs/Coroutines.html):
1. Outline all async regions to functions
2. Add LLVM coro intrinsics to mark coroutine begin/end
3. Use MLIR conversion framework to convert all remaining async types and ops to LLVM + Async runtime function calls
All `async.await` operations inside async regions converted to coroutine suspension points. Await operation outside of a coroutine converted to the blocking wait operations.
Implement simple runtime to support concurrent execution of coroutines.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D89292
Forward missing attributes when creating the new transfer op otherwise the
builder would use default values.
Differential Revision: https://reviews.llvm.org/D89907
This still satisfies the constraints required by the affine dialect and
gives more flexibility in what iteration bounds can be used when
loewring to the GPU dialect.
Differential Revision: https://reviews.llvm.org/D89782
Now, convert-shape-to-std doesn't internally create memrefs, which was
previously a bit of a layering violation. The conversion to memrefs
should logically happen as part of bufferization.
Differential Revision: https://reviews.llvm.org/D89669
This PR adds support for identified and recursive structs.
This includes: parsing, printing, serializing, and
deserializing such structs.
The following C struct:
```C
struct A {
A* next;
};
```
which is translated to the following MLIR code as:
```mlir
!spv.struct<A, (!spv.ptr<!spv.struct<A>, Generic>)>
```
would be represented in the SPIR-V module as:
```spirv
OpName %A "A"
OpTypeForwardPointer %APtr Generic
%A = OpTypeStruct %APtr
%APtr = OpTypePointer Generic %A
```
In particular the following changes are included:
- SPIR-V structs can now be either identified or literal
(i.e. non-identified).
- All structs now have their members surrounded by a ()-pair.
- For recursive references,
(1) an OpTypeForwardPointer instruction is emitted before
the OpTypeStruct instruction defining the recursive struct
(2) an OpTypePointer instruction is emitted after the
OpTypeStruct instruction which actually defines the recursive
pointer to struct type.
Reviewed By: antiagainst, rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D87206
This is required or broadcasting with operands of different ranks will lead to
failures as the select op requires both possible outputs and its output type to
be the same.
Differential Revision: https://reviews.llvm.org/D89134
Add conversion pass for Vector dialect to SPIR-V dialect and add some simple
conversion pattern for vector.broadcast, vector.insert, vector.extract.
Differential Revision: https://reviews.llvm.org/D88761
A pattern to convert `spv.CompositeInsert` and `spv.CompositeExtract`.
In LLVM, there are 2 ops that correspond to each instruction depending
on the container type. If the container type is a vector type, then
the result of conversion is `llvm.insertelement` or `llvm.extractelement`.
If the container type is an aggregate type (i.e. struct, array), the
result of conversion is `llvm.insertvalue` or `llvm.extractvalue`.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D88205
The previous code did the lowering to alloca, malloc, and aligned_malloc
in a single class with different code paths that are somewhat difficult to
follow.
This change moves the common code to a base class and has a separte
derived class per lowering target that contains the specifics.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88696
While affine maps are part of the builtin memref type, there is very
limited support for manipulating them in the standard dialect. Add
transpose to the set of ops to complement the existing view/subview ops.
This is a metadata transformation that encodes the transpose into the
strides of a memref.
I'm planning to use this when lowering operations on strided memrefs,
using the transpose to remove the stride without adding a dependency on
linalg dialect.
Differential Revision: https://reviews.llvm.org/D88651
We hit an llvm_unreachable related to unranked memrefs for call ops
with scalar types. Removing the llvm_unreachable since the conversion
should gracefully bail out in the presence of unranked memrefs. Adding
tests to verify that.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D88709
Current setup for conv op vectorization does not enable user to specify tile
sizes as well as dimensions for vectorization. In this commit we change that by
adding tile sizes as pass arguments. Every dimension with corresponding tile
size > 1 is automatically vectorized.
Differential Revision: https://reviews.llvm.org/D88533
This patch adds support for the 'return' and 'call' ops to the bare-ptr
calling convention. These changes also align the bare-ptr calling
convention code with the latest changes in the default calling convention
and reduce the amount of customization code needed.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87724
- use select-ops to make the lowering simpler
- change style of FileCheck variables names to be consistent
- change some variable names in the code to be more explicit
Differential Revision: https://reviews.llvm.org/D88258
(1) simplify integer printing logic by always using 64-bit print
(2) add index support (since vector<16xindex> is planned to be added)
(3) adjust naming convention print_x -> printX
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D88436
This generalizes printing beyond just i1,i32,i64 and also accounts
for signed and unsigned interpretation in the output.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D88290
Allow propagating optional user defined attributes during SCF to GPU conversion. Gives opportunity to use user defined attributes in the further lowering. For example setting subgroup size, or other options for GPU dispatch. This does not break backward compatibility and does not require new attributes, just allow passing optional ones.
Differential Revision: https://reviews.llvm.org/D88203
This pass converts shape.cstr_* ops to eager (side-effecting)
error-handling code. After that conversion is done, the witnesses are
trivially satisfied and are replaced with `shape.const_witness true`.
Differential Revision: https://reviews.llvm.org/D87941
Conversion to LLVM becomes confusing and incorrect if someone tries to lower
STD -> LLVM and only then GPULaunchFuncOp to LLVM separately. Although it is
technically allowed now, it works incorrectly because of the argument
promotion. The correct way to use this conversion pattern is to add to the
STD->LLVM patterns before running the pass.
Differential Revision: https://reviews.llvm.org/D88147
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
ConvOp vectorization supports now only convolutions of static shapes with dimensions
of size either 3(vectorized) or 1(not) as underlying vectors have to be of static
shape as well. In this commit we add support for convolutions of any size as well as
dynamic shapes by leveraging existing matmul infrastructure for tiling of both input
and kernel to sizes accepted by the previous version of ConvOp vectorization.
In the future this pass can be extended to take "tiling mask" as a user input which
will enable vectorization of user specified dimensions.
Differential Revision: https://reviews.llvm.org/D87676
When packing function results into a structure during the standard-to-llvm
dialect conversion, do not assume the conversion was successful and propagate
nullptr as error state.
Fixes PR45184.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D87605
Added support to the Std dialect cast operations to do casts in vector types when feasible.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87410
Type converter may fail and return nullptr on unconvertible types. The function
conversion did not include a check and was attempting to use a nullptr type to
construct an LLVM function, leading to a crash. Add a check and return early.
The rest of the call stack propagates errors properly.
Fixes PR47403.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D87075
This introduces a builder for the more general case that supports zero
elements (where the element type can't be inferred from the ValueRange,
since it might be empty).
Also, fix up some cases in ShapeToStandard lowering that hit this. It
happens very easily when dealing with shapes of 0-D tensors.
The SameOperandsAndResultElementType is redundant with the new
TypesMatchWith and prevented having zero elements.
Differential Revision: https://reviews.llvm.org/D87492
Rationale:
After some discussion we decided that it is safe to assume 32-bit
indices for all subscripting in the vector dialect (it is unlikely
the dialect will be used; or even work; for such long vectors).
So rather than detecting specific situations that can exploit
32-bit indices with higher parallel SIMD, we just optimize it
by default, and let users that don't want it opt-out.
Reviewed By: nicolasvasilache, bkramer
Differential Revision: https://reviews.llvm.org/D87404
Take advantage of the new `dynamic_tensor_from_elements` operation in `std`.
Instead of stack-allocated memory, we can now lower directly to a single `std`
operation.
Differential Revision: https://reviews.llvm.org/D86935
This replaces the select chain for edge-padding with an scf.if that
performs the memory operation when the index is in bounds and uses the
pad value when it's not. For transfer_write the same mechanism is used,
skipping the store when the index is out of bounds.
The integration test has a bunch of cases of how I believe this should
work.
Differential Revision: https://reviews.llvm.org/D87241
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.
Differential Revision: https://reviews.llvm.org/D86619
Vector to SCF conversion still had issues due to the interaction with the natural alignment derived by the LLVM data layout. One traditional workaround is to allocate aligned. However, this does not always work for vector sizes that are non-powers of 2.
This revision implements a more portable mechanism where the intermediate allocation is always a memref of elemental vector type. AllocOp is extended to use the natural LLVM DataLayout alignment for non-scalar types, when the alignment is not specified in the first place.
An integration test is added that exercises the transfer to scf.for + scalar lowering with a 5x5 transposition.
Differential Revision: https://reviews.llvm.org/D87150
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
Added 128 byte alignment to alloc ops created in VectorToSCF pass.
128b alignment was already introduced to this pass but not to all alloc
ops. This commit changes that by adding 128b alignment to the remaining ops.
The point of specifying alignment is to prevent possible memory alignment errors
on weakly tested architectures.
Differential Revision: https://reviews.llvm.org/D86454
Adding a conversion pattern for the parallel Operation. This will
help the conversion of parallel operation with standard dialect to
parallel operation with llvm dialect. The type conversion of the block
arguments in a parallel region are controlled by the pattern for the
parallel Operation. Without this pattern, a parallel Operation with
block arguments cannot be converted from standard to LLVM dialect.
Other OpenMP operations without regions are marked as legal. When
translation of OpenMP operations with regions are added then patterns
for these operations can also be added.
Also uses all the standard to llvm patterns. Patterns of other dialects
can be added later if needed.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86273
This patch allows to pass the gpu module name to SPIR-V
module during conversion. This has many benefits as we can lookup
converted to SPIR-V kernel in the symbol table.
In order to avoid symbol conflicts, `"__spv__"` is added to the
gpu module name to form the new one.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86384