Commit Graph

5 Commits

Author SHA1 Message Date
River Riddle ebcc022507 [mlir][AsmPrinter] Refactor printing to only print aliases for attributes/types that will exist in the output.
This revision refactors the way that attributes/types are considered when generating aliases. Instead of considering all of the attributes/types of every operation, we perform a "fake" print step that prints the operations using a dummy printer to collect the attributes and types that would actually be printed during the real process. This removes a lot of attributes/types from consideration that generally won't end up in the final output, e.g. affine map attributes in an `affine.apply`/`affine.for`.

This resolves a long standing TODO w.r.t aliases, and helps to have a much cleaner textual output format. As a datapoint to the latter, as part of this change several tests were identified as testing for the presence of attributes aliases that weren't actually referenced by the custom form of any operation.

To ensure that this wouldn't cause a large degradation in compile time due to the second full print, I benchmarked this change on a very large module with a lot of operations(The file is ~673M/~4.7 million lines long). This file before this change take ~6.9 seconds to print in the custom form, and ~7 seconds after this change. In the custom assembly case, this added an average of a little over ~100 miliseconds to the compile time. This increase was due to the way that argument attributes on functions are structured and how they get printed; i.e. with a better representation the negative impact here can be greatly decreased. When printing in the generic form, this revision had no observable impact on the compile time. This benchmarking leads me to believe that the impact of this change on compile time w.r.t printing is closely related to `print` methods that perform a lot of additional/complex processing outside of the OpAsmPrinter.

Differential Revision: https://reviews.llvm.org/D90512
2020-11-09 21:54:47 -08:00
Jakub Lichman 0b17d4754a [mlir][Linalg] Tile sizes for Conv ops vectorization added as pass arguments
Current setup for conv op vectorization does not enable user to specify tile
sizes as well as dimensions for vectorization. In this commit we change that by
adding tile sizes as pass arguments. Every dimension with corresponding tile
size > 1 is automatically vectorized.

Differential Revision: https://reviews.llvm.org/D88533
2020-09-30 11:31:28 +00:00
Nicolas Vasilache 93fd30bac3 [mlir][Linalg] Evolve named ops to use assembly form and support linalg on tensors.
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.

As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:

```
  linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
               outs(%c : memref<?x?xf32>)
```

, whereas the syntax for a `linalg.matmul` returning a new tensor is:

```
  %d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
                    init(%c : memref<?x?xf32>)
                      -> tensor<?x?xf32>
```

Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
2020-09-18 06:14:30 -04:00
Jakub Lichman 347d59b16c [mlir][Linalg] Convolution tiling added to ConvOp vectorization pass
ConvOp vectorization supports now only convolutions of static shapes with dimensions
of size either 3(vectorized) or 1(not) as underlying vectors have to be of static
shape as well. In this commit we add support for convolutions of any size as well as
dynamic shapes by leveraging existing matmul infrastructure for tiling of both input
and kernel to sizes accepted by the previous version of ConvOp vectorization.
In the future this pass can be extended to take "tiling mask" as a user input which
will enable vectorization of user specified dimensions.

Differential Revision: https://reviews.llvm.org/D87676
2020-09-17 09:39:41 +00:00
Jakub Lichman 67b37f571c [mlir] Conv ops vectorization pass
In this commit a new way of convolution ops lowering is introduced.
The conv op vectorization pass lowers linalg convolution ops
into vector contractions. This lowering is possible when conv op
is first tiled by 1 along specific dimensions which transforms
it into dot product between input and kernel subview memory buffers.
This pass converts such conv op into vector contraction and does
all necessary vector transfers that make it work.

Differential Revision: https://reviews.llvm.org/D86619
2020-09-08 08:47:42 +00:00