We continue accepting "macosx" but canonicalize it to "macos", When emitting
diagnostics, we use "macOS" instead of "OS X".
The PlatformName in TargetInfo is changed from "macosx" to "macos" so we can
directly compare the Platform in AvailabilityAttr with the PlatformName
in TargetInfo.
rdar://26795172
rdar://26800775
llvm-svn: 274064
Sometimes, the declaration we found has inherited availability
attributes, attaching the note to it does not tell us where the
availability attributes are in the source.
Go through the redecl chain to find the declaration with actual
availability attributes.
rdar://25221771
llvm-svn: 268786
This is a follow-up to r261512, which made the 'strict' availability
attribute flag behave like 'unavailable'. However, that fix was
insufficient. The following case would (erroneously) error when the
deployment target was older than 10.9:
struct __attribute__((availability(macosx,strict,introduced=10.9))) A;
__attribute__((availability(macosx,strict,introduced=10.9))) void f(A*);
The use of A* in the argument list for f is valid here, since f and A
have the same availability.
The fix is to return AR_Unavailable from DeclBase::getAvailability
instead of AR_NotYetIntroduced. This also reverts the special handling
added in r261163, instead relying on the well-tested logic for
AR_Unavailable.
rdar://problem/23791325
llvm-svn: 262915
Use "strict" instead of "nopartial". Also make strictly not-introduced
share the same diagnostics as Obsolete and Unavailable.
rdar://23791325
llvm-svn: 261512
An optional nopartial can be placed after the platform name.
int bar() __attribute__((availability(macosx,nopartial,introduced=10.12))
When deploying back to a platform version prior to when the declaration was
introduced, with 'nopartial', Clang emits an error specifying that the function
is not introduced yet; without 'nopartial', the behavior stays the same: the
declaration is `weakly linked`.
A member is added to the end of AttributeList to save the location of the
'nopartial' keyword. A bool member is added to AvailabilityAttr.
The diagnostics for 'nopartial' not-yet-introduced is handled in the same way as
we handle unavailable cases.
Reviewed by Doug Gregor and Jordan Rose.
rdar://23791325
llvm-svn: 261163
Fixes <rdar://problem/15584219> and <rdar://problem/12241361>.
This change looks large, but all it does is reuse and consolidate
the delayed diagnostic logic for deprecation warnings with unavailability
warnings. By doing so, it showed various inconsistencies between the
diagnostics, which were close, but not consistent. It also revealed
some missing "note:"'s in the deprecated diagnostics that were showing
up in the unavailable diagnostics, etc.
This change also changes the wording of the core deprecation diagnostics.
Instead of saying "function has been explicitly marked deprecated"
we now saw "'X' has been been explicitly marked deprecated". It
turns out providing a bit more context is useful, and often we
got the actual term wrong or it was not very precise
(e.g., "function" instead of "destructor"). By just saying the name
of the thing that is deprecated/deleted/unavailable we define
this issue away. This diagnostic can likely be further wordsmithed
to be shorter.
llvm-svn: 197627
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127