Commit Graph

22 Commits

Author SHA1 Message Date
Sanjay Patel 8b207defea [DAGCombiner] narrow vector binops when extraction is cheap
Narrowing vector binops came up in the demanded bits discussion in D52912.

I don't think we're going to be able to do this transform in IR as a canonicalization 
because of the risk of creating unsupported widths for vector ops, but we already have 
a DAG TLI hook to allow what I was hoping for: isExtractSubvectorCheap(). This is 
currently enabled for x86, ARM, and AArch64 (although only x86 has existing regression 
test diffs).

This is artificially limited to not look through bitcasts because there are so many 
test diffs already, but that's marked with a TODO and is a small follow-up.

Differential Revision: https://reviews.llvm.org/D53784

llvm-svn: 345602
2018-10-30 14:14:34 +00:00
Craig Topper 06aea1720a [X86] Move promotion of vector and/or/xor from legalization to DAG combine
Summary:
I've noticed that the bitcasts we introduce for these make computeKnownBits and computeNumSignBits not work well in LegalizeVectorOps. LegalizeVectorOps legalizes bottom up while LegalizeDAG legalizes top down. The bottom up strategy for LegalizeVectorOps means operands are legalized before their uses. So we promote and/or/xor before we legalize the operands that use them making computeKnownBits/computeNumSignBits in places like LowerTruncate suboptimal. I looked at changing LegalizeVectorOps to be top down as well, but that was more disruptive and caused some regressions. I also looked at just moving promotion of binops to LegalizeDAG, but that had a few issues one around matching AND,ANDN,OR into VSELECT because I had to create ANDN as vXi64, but the other nodes hadn't legalized yet, I didn't look too hard at fixing that.

This patch seems to produce better results overall than my other attempts. We now form broadcasts of constants better in some cases. For at least some of them the AND was being introduced in LegalizeDAG, promoted to vXi64, and the BUILD_VECTOR was also legalized there. I think we got bad ordering of that. Now the promotion is out of the legalizer so we handle this better.

In the longer term I think we really should evaluate whether we should be doing this promotion at all. It's really there to reduce isel pattern count, but I'm wondering if we'd be better served just eating the pattern cost or doing C++ based isel for vector and/or/xor in X86ISelDAGToDAG. The masked and/or/xor will definitely be difficult in patterns if a bitcast gets between the vselect and the and/or/xor node. That becomes a lot of permutations to cover.

Reviewers: RKSimon, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D53107

llvm-svn: 344487
2018-10-15 01:51:58 +00:00
Sanjay Patel 10c11b867a [x86] avoid 256-bit andnp that requires insert/extract with AVX1 (PR37449)
This is the final (I hope!) problem pattern mentioned in PR37749:
https://bugs.llvm.org/show_bug.cgi?id=37749

We are trying to avoid an AVX1 sinkhole caused by having 256-bit bitwise logic ops but no other 256-bit integer ops. 
We've already solved the simple logic ops, but 'andn' is an x86 special. I looked at alternative solutions like 
extending the generic DAG combine or trying to wait until the ANDNP node is created, but those are bigger patches 
that can over-reach. Ie, splitting to 128-bit does not look like a win in most cases with >1 256-bit op.

The pattern matching is cluttered with bitcasts because of our i64 element canonicalization. For the affected test, 
we have this vector-type-legalized sequence:

        t29: v8i32 = concat_vectors t27, t28
      t30: v4i64 = bitcast t29
        t18: v8i32 = BUILD_VECTOR Constant:i32<-1>, Constant:i32<-1>, ...
      t31: v4i64 = bitcast t18
    t32: v4i64 = xor t30, t31
      t9: v8i32 = BUILD_VECTOR Constant:i32<255>, Constant:i32<255>, ...
    t34: v4i64 = bitcast t9
  t35: v4i64 = and t32, t34
t36: v8i32 = bitcast t35
      t37: v4i32 = extract_subvector t36, Constant:i64<0>
      t38: v4i32 = extract_subvector t36, Constant:i64<4>

Differential Revision: https://reviews.llvm.org/D52318

llvm-svn: 343008
2018-09-25 19:09:34 +00:00
Sanjay Patel db1fb8cd20 [x86] add more tests for poetntial andnp splitting with AVX1; NFC
llvm-svn: 342775
2018-09-21 21:25:16 +00:00
Sanjay Patel 19b5eb580b [x86] add (negative) andnp test for D52318; NFC
llvm-svn: 342756
2018-09-21 18:24:53 +00:00
Sanjay Patel 0bda919870 [x86] add test for 256-bit andn (PR37749); NFC
llvm-svn: 342595
2018-09-19 22:00:56 +00:00
Sanjay Patel f85ca6abee [x86] be more selective about converting 'and' to shuffle (PR37749)
isVectorClearMaskLegal() is the TLI hook used by the generic
DAGCombiner::XformToShuffleWithZero().

We've grown to accomodate/expect this transform to shuffle
(disabling it more generally results in many regressions).
So I'm narrowly excluding the 256-bit types that clearly 
are not worthwhile for AVX1. 

I think in most cases we are able to recover by converting 
the shuffle back into 'and' ops, but the cases in:
https://bugs.llvm.org/show_bug.cgi?id=37749
...show that there are cracks.

llvm-svn: 334759
2018-06-14 19:55:02 +00:00
Sanjay Patel d49219db84 [x86] add tests for AVX1 FP logic op abuse (PR37749); NFC
Also, add a RUN for AVX2 to make sure that's good.

llvm-svn: 334744
2018-06-14 18:08:06 +00:00
Francis Visoiu Mistrih 25528d6de7 [CodeGen] Unify MBB reference format in both MIR and debug output
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.

The MIR printer prints the IR name of a MBB only for block definitions.

* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix

Differential Revision: https://reviews.llvm.org/D40422

llvm-svn: 319665
2017-12-04 17:18:51 +00:00
Dinar Temirbulatov aead31a36f [X86] SET0 to use XMM registers where possible PR26018 PR32862
Differential Revision: https://reviews.llvm.org/D35839

llvm-svn: 309298
2017-07-27 17:47:01 +00:00
Simon Pilgrim 31f5402711 [X86][AVX] Regenerate shuffle tests with broadcast comments.
llvm-svn: 309266
2017-07-27 12:32:45 +00:00
Sanjay Patel 15748d239e [x86] transform vector inc/dec to use -1 constant (PR33483)
Convert vector increment or decrement to sub/add with an all-ones constant:

add X, <1, 1...> --> sub X, <-1, -1...>
sub X, <1, 1...> --> add X, <-1, -1...>

The all-ones vector constant can be materialized using a pcmpeq instruction that is 
commonly recognized as an idiom (has no register dependency), so that's better than 
loading a splat 1 constant.

AVX512 uses 'vpternlogd' for 512-bit vectors because there is apparently no better
way to produce 512 one-bits.

The general advantages of this lowering are:
1. pcmpeq has lower latency than a memop on every uarch I looked at in Agner's tables, 
   so in theory, this could be better for perf, but...

2. That seems unlikely to affect any OOO implementation, and I can't measure any real 
   perf difference from this transform on Haswell or Jaguar, but...

3. It doesn't look like it from the diffs, but this is an overall size win because we 
   eliminate 16 - 64 constant bytes in the case of a vector load. If we're broadcasting 
   a scalar load (which might itself be a bug), then we're replacing a scalar constant 
   load + broadcast with a single cheap op, so that should always be smaller/better too.

4. This makes the DAG/isel output more consistent - we use pcmpeq already for padd x, -1 
   and psub x, -1, so we should use that form for +1 too because we can. If there's some
   reason to favor a constant load on some CPU, let's make the reverse transform for all
   of these cases (either here in the DAG or in a later machine pass).

This should fix:
https://bugs.llvm.org/show_bug.cgi?id=33483

Differential Revision: https://reviews.llvm.org/D34336

llvm-svn: 306289
2017-06-26 14:19:26 +00:00
Sanjay Patel ae382bb6af [DAG] add splat vector support for 'xor' in SimplifyDemandedBits
This allows forming more 'not' ops, so we get improvements for ISAs that have and-not.

Follow-up to:
https://reviews.llvm.org/rL300725

llvm-svn: 300763
2017-04-19 21:23:09 +00:00
Sanjay Patel ff981f9256 [x86] add tests for potential andn optimization; NFC
llvm-svn: 300617
2017-04-18 22:36:59 +00:00
Elena Demikhovsky 291fe0159f VX-512: Fixed a bug in FP logic operation lowering
FP logic instructions are supported in DQ extension on AVX-512 target.
I use integer operations instead.
Added tests.
I also enabled FABS in this patch in order to check ANDPS.
The operations are FOR, FXOR, FAND, FANDN.
The instructions, that supported for 512-bit vector under DQ are:
VORPS/PD, VXORPS/PD, VANDPS/PD, FANDNPS/PD.

Differential Revision: http://reviews.llvm.org/D15110

llvm-svn: 254913
2015-12-07 14:33:34 +00:00
James Y Knight 7c905063c5 Make utils/update_llc_test_checks.py note that the assertions are
autogenerated.

Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.

llvm-svn: 253917
2015-11-23 21:33:58 +00:00
Sanjay Patel defd9b9b4c use update_llc_test_checks.py to tighten checking in these tests
1. There were no CHECK-LABELs, so we could match instructions from the wrong function.
2. The use of zero operands meant multiple xor instructions could match some CHECKs.
3. The test was over-specified to need a Sandybridge CPU and Darwin triple.

llvm-svn: 233198
2015-03-25 17:34:11 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Craig Topper 05baa85f58 Properly qualify AVX2 specific parts of execution dependency table. Also enable converting between 256-bit PS/PD operations when AVX1 is enabled. Fixes PR11370.
llvm-svn: 144622
2011-11-15 05:55:35 +00:00
Jakob Stoklund Olesen a70e9417fb Kill and collapse outstanding DomainValues.
DomainValues that are only used by "don't care" instructions are now
collapsed to the first possible execution domain after all basic blocks
have been processed.  This typically means the PS domain on x86.

For example, the vsel_i64 and vsel_double functions in sse2-blend.ll are
completely collapsed to the PS domain instead of containing a mix of
execution domains created by isel.

llvm-svn: 144037
2011-11-07 23:08:21 +00:00
Bruno Cardoso Lopes 3c7d6eb64c Cleanup vector logical ops in AVX and add use int versions for simple
v2i64

llvm-svn: 137919
2011-08-18 02:11:34 +00:00
Bruno Cardoso Lopes 337a7fdb13 Rename and tidy up tests
llvm-svn: 137103
2011-08-09 03:04:23 +00:00