When unrolling under multiple exits which is under off-by-default option,
the assert that checks for VMap entry in loop exit values is too strong.
(assert if VMap entry did not exist, the value should be a
constant). However, values derived from
constants or from values outside loop, does not have a VMap entry too.
Removed the assert and added a testcase showcasing the property for
non-constant values.
llvm-svn: 307542
Summary:
This solves PR33641.
When removing a dead argument we must also handle possibly existing calls
to llvm.dbg.value that use the removed argument. Now we change the use
of the otherwise dead argument to an undef for some other pass to cleanup
later.
If the calls are left untouched, they will later on cause errors:
"function-local metadata used in wrong function"
since the ArgumentPromotion rewrites the code by creating a new function
with the wanted signature, but the metadata is not recreated so the new
function may then erroneously use metadata from the old function.
Reviewers: mstorsjo, rnk, arsenm
Reviewed By: rnk
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D34874
llvm-svn: 307521
the invalidation propagation logic from an SCC to a Function.
I wrote the infrastructure to test this but didn't actually use it in
the unit test where it was designed to be used. =[ My bad. Once
I actually added it to the test case I discovered that it also hadn't
been properly implemented, so I've implemented it. The logic in the FAM
proxy for an SCC pass to propagate invalidation follows the same ideas
as the FAM proxy for a Module pass, but the implementation is a bit
different to reflect the fact that it is forwarding just for an SCC.
However, implementing this correctly uncovered a surprising "bug" (it
was conservatively correct but relatively very expensive) in how we
handle invalidation when splitting one SCC into multiple SCCs. We did an
eager invalidation when in reality we should be deferring invaliadtion
for the *current* SCC to the CGSCC pass manager and just invaliating the
newly constructed SCCs. Otherwise we end up invalidating too much too
soon. This was exposed by the inliner test case that I've updated. Now,
we invalidate *just* the split off '(test1_f)' SCC when doing the CG
update, and then the inliner finishes and invalidates the '(test1_g,
test1_h)' SCC's analyses. The first few attempts at fixing this hit
still more bugs, but all of those are covered by existing tests. For
example, the inliner should also preserve the FAM proxy to avoid
unnecesasry invalidation, and this is safe because the CG update
routines it uses handle any necessary adjustments to the FAM proxy.
Finally, the unittests for the CGSCC pass manager needed a bunch of
updates where we weren't correctly preserving the FAM proxy because it
hadn't been fully implemented and failing to preserve it didn't matter.
Note that this doesn't yet fix the current crasher due to MemSSA finding
a stale dominator tree, but without this the fix to that crasher doesn't
really make any sense when testing because it relies on the proxy
behavior.
llvm-svn: 307487
I recently changed m_One and m_AllOnes to use Constant::isOneValue/isAllOnesValue which work on floating point values too. The original implementation looked specifically for ConstantInt scalars and splats. So I'm guessing we are accidentally trying to issue sext/zexts on floating point types now.
Hopefully I figure out how to reproduce the failure from the PR soon.
llvm-svn: 307486
The patch was reverted due to a bug. The bug was that if the IV is the 2nd operand of the icmp
instruction, then the "Pred" variable gets swapped and differs from the instruction's predicate.
In this patch we use the original predicate to do the transformation.
Also added a test case that exercises this situation.
Differentian Revision: https://reviews.llvm.org/D35107
llvm-svn: 307477
Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
llvm-svn: 307451
Summary: For interative sample-pgo, if a hot call site is inlined in the profiling binary, we should inline it in before profile annotation in the backend. Before that, the compile phase first collects all GUIDs that needs to be imported and creates virtual "hot" call edge in the summary. However, "hot" is not good enough to guarantee the callsites get inlined. This patch introduces "critical" call edge, and assign much higher importing threshold for those edges.
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: sanjoy, mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D35096
llvm-svn: 307439
With the NFC refactoring in rL307417 (git SHA 987dd01), all the logic
is in place to support multiple exit/exiting blocks when prolog
remainder is generated.
This patch removed the assert that multiple exit blocks unrolling is only
supported when epilog remainder is generated.
Also, added test runs and checks with PROLOG prefix in
runtime-loop-multiple-exits.ll test cases.
llvm-svn: 307435
Summary:
This is an addon to the change rl304488 cloning fixes. (Originally rl304226 reverted rl304228 and reapplied rl304488 https://reviews.llvm.org/D33655)
rl304488 works great when DILocalVariables that comes from the inlined function has a 'unique-ed' type, but,
in the case when the variable type is distinct we will create a second DILocalVariable in the scope of the original function that was inlined.
Consider cloning of the following function:
```
define private void @f() !dbg !5 {
%1 = alloca i32, !dbg !11
call void @llvm.dbg.declare(metadata i32* %1, metadata !14, metadata !12), !dbg !18
ret void, !dbg !18
}
!14 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !17) ; came from an inlined function
!15 = distinct !DISubprogram(name: "inlined", linkageName: "inlined", scope: null, file: !6, line: 8, type: !7, isLocal: true, isDefinition: true, scopeLine: 9, isOptimized: false, unit: !0, variables: !16)
!16 = !{!14}
!17 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
```
Without this fix, when function 'f' is cloned, we will create another DILocalVariable for "inlined", due to its type being distinct.
```
define private void @f.1() !dbg !23 {
%1 = alloca i32, !dbg !26
call void @llvm.dbg.declare(metadata i32* %1, metadata !28, metadata !12), !dbg !30
ret void, !dbg !30
}
!14 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !17)
!15 = distinct !DISubprogram(name: "inlined", linkageName: "inlined", scope: null, file: !6, line: 8, type: !7, isLocal: true, isDefinition: true, scopeLine: 9, isOptimized: false, unit: !0, variables: !16)
!16 = !{!14}
!17 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
;
!28 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !29) ; OOPS second DILocalVariable
!29 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
```
Now we have two DILocalVariable for "inlined" within the same scope. This result in assert in AsmPrinter/DwarfDebug.h:131: void llvm::DbgVariable::addMMIEntry(const llvm::DbgVariable &): Assertion `V.Var == Var && "conflicting variable"' failed.
(Full example: See: https://bugs.llvm.org/show_bug.cgi?id=33492)
In this change we prevent duplication of types so that when a metadata for DILocalVariable is cloned it will get uniqued to the same metadate node as an original variable.
Reviewers: loladiro, dblaikie, aprantl, echristo
Reviewed By: loladiro
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D35106
llvm-svn: 307418
Minor refactoring to use the preexisting loop exit that's already
calculated. We do not need to recompute the loop exit in ConnectProlog.
Apart from avoiding redundant computation, this is required for
supporting multiple loop exits when Prolog remainder loops are generated.
llvm-svn: 307417
InferAddressSpaces does not check address space in collectFlatAddressExpressions,
which causes values with non flat address space put into Postorder and causes
assertion in cloneValueWithNewAddressSpace.
This patch fixes assertion in OpenCL 2.0 conformance test generic_address_space
subtest for amdgcn target.
Differential Revision: https://reviews.llvm.org/D34991
llvm-svn: 307349
Adds loop expansions for known-size and unknown-sized memcpy calls, allowing the
target to provide the operand types through TTI callbacks. The default values
for the TTI callbacks use int8 operand types and matches the existing behaviour
if they aren't overridden by the target.
Differential revision: https://reviews.llvm.org/D32536
llvm-svn: 307346
Revert "Copy arguments passed by value into explicit allocas for ASan."
Revert "[asan] Add end-to-end tests for overflows of byval arguments."
Build failure on lldb-x86_64-ubuntu-14.04-buildserver.
Test failure on clang-cmake-aarch64-42vma and sanitizer-x86_64-linux-android.
llvm-svn: 307345
ASan determines the stack layout from alloca instructions. Since
arguments marked as "byval" do not have an explicit alloca instruction, ASan
does not produce red zones for them. This commit produces an explicit alloca
instruction and copies the byval argument into the allocated memory so that red
zones are produced.
Patch by Matt Morehouse.
Differential revision: https://reviews.llvm.org/D34789
llvm-svn: 307342
Using profile information to guide consthoisting is generally helpful for
performance, so the patch turns it on by default. No compile time or perf
regression were found using spec2000 and spec2006 on x86. Some significant
improvement (>20%) was seen on internal benchmarks.
Differential Revision: https://reviews.llvm.org/D35063
llvm-svn: 307338
The patch is to adjust the strategy of frequency based consthoisting:
Previously when the candidate block has the same frequency with the existing
blocks containing a const, it will not hoist the const to the candidate block.
For that case, now we change the strategy to hoist the const if only existing
blocks have more than one block member. This is helpful for reducing code size.
Differential Revision: https://reviews.llvm.org/D35084
llvm-svn: 307328
This is the same as r304719 but for ThinLTO.
The substantial difference is that in this case we don't have
whole visibility, just the summary.
In the LTO case, when we got the resolution for the input file we
could just see if the linker told us whether a symbol was linker
redefined (using --wrap or --defsym) and switch the linkage directly
for the GV.
Here, we have the summary. So, we record that the linkage changed
from <whatever it was> to $weakany to prevent IPOs across this symbol
boundaries and actually just switch the linkage at FunctionImport time.
This patch should also fixes the lld bits (as all the scaffolding for
communicating if a symbol is linker redefined should be there & should
be the same), but I'll make sure to add some tests there as well.
Fixes PR33192.
Differential Revision: https://reviews.llvm.org/D35064
llvm-svn: 307303
Summary:
`Instruction::Switch`: only first operand can be set to a non-constant value.
`Instruction::InsertValue` both the first and the second operand can be set to a non-constant value.
`Instruction::Alloca` return true for non-static allocation.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: srhines, pirama, llvm-commits
Differential Revision: https://reviews.llvm.org/D34905
llvm-svn: 307294
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.
llvm-svn: 307292
Currently, we do not support multiple exiting blocks to the
latch exit block. However, this bailout wasn't triggered when we had a
unique exit block (which is the latch exit), with multiple exiting
blocks to that unique exit.
Moved the bailout so that it's triggered in both cases and added
testcase.
llvm-svn: 307291
Summary: In this code we got to Dom by following the predecessor link of BB. So it stands to reason that BB should also show up as a successor of Dom's terminator right? There isn't a way to have the CFG connect in only one direction is there?
Reviewers: jmolloy, davide, mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D35025
llvm-svn: 307276
Bswap isn't a simple operation so we need to make sure we are really removing a call to it before doing these simplifications.
For the case when both LHS and RHS are bswaps I've allowed it to be moved if either LHS or RHS has a single use since that at least allows us to move it later where it might find another bswap to combine with and it decreases the use count on the other side so maybe the other user can be optimized.
Differential Revision: https://reviews.llvm.org/D34974
llvm-svn: 307273
When the formulae search space is huge, LSR uses a series of heuristic to keep
pruning the search space until the number of possible solutions are within
certain limit.
The big hammer of the series of heuristics is NarrowSearchSpaceByPickingWinnerRegs,
which picks the register which is used by the most LSRUses and deletes the other
formulae which don't use the register. This is a effective way to prune the search
space, but quite often not a good way to keep the best solution. We saw cases before
that the heuristic pruned the best formula candidate out of search space.
To relieve the problem, we introduce a new heuristic called
NarrowSearchSpaceByFilterFormulaWithSameScaledReg. The basic idea is in order to
reduce the search space while keeping the best formula, we want to keep as many
formulae with different Scale and ScaledReg as possible. That is because the central
idea of LSR is to choose a group of loop induction variables and use those induction
variables to represent LSRUses. An induction variable candidate is often represented
by the Scale and ScaledReg in a formula. If we have more formulae with different
ScaledReg and Scale to choose, we have better opportunity to find the best solution.
That is why we believe pruning search space by only keeping the best formula with the
same Scale and ScaledReg should be more effective than PickingWinnerReg. And we use
two criteria to choose the best formula with the same Scale and ScaledReg. The first
criteria is to select the formula using less non shared registers, and the second
criteria is to select the formula with less cost got from RateFormula. The patch
implements the heuristic before NarrowSearchSpaceByPickingWinnerRegs, which is the
last resort.
Testing shows we get 1.8% and 2% on two internal benchmarks on x86. llvm nightly
testsuite performance is neutral. We also tried lsr-exp-narrow and it didn't help
on the two improved internal cases we saw.
Differential Revision: https://reviews.llvm.org/D34583
llvm-svn: 307269
It seems that the patch was reverted by mistake. Clang testing showed failure of the
MathExtras.SaturatingMultiply test, however I was unable to reproduce the issue on the
fresh code base and was able to confirm that the transformation introduced by the change
does not happen in the said test. This gives a strong confidence that the actual reason of
the failure of the initial patch was somewhere else, and that problem now seems to be
fixed. Re-submitting the change to confirm that.
llvm-svn: 307244
Summary:
GlobalExtensions is dereferenced twice, once for iteration and then a check if it is empty.
As a ManagedStatic this dereference forces it's construction which is unnecessary.
Reviewers: efriedma, davide, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: chapuni, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D33381
llvm-svn: 307229
LLVM's definition of dominance allows instructions that are cyclic
in unreachable blocks, e.g.:
%pat = select i1 %condition, @global, i16* %pat
because any instruction dominates an instruction in a block that's
not reachable from entry.
So, remove unreachable blocks from the function, because a) there's
no point in analyzing them and b) GlobalOpt should otherwise grow
some more complicated logic to break these cycles.
Differential Revision: https://reviews.llvm.org/D35028
llvm-svn: 307215
This adds exact flags to AShr/LShr flags where we can statically
prove it is valid using the range of induction variables. This
allows further optimisations to remove extra loads.
Differential Revision: https://reviews.llvm.org/D34207
llvm-svn: 307157
This patch seems to cause failures of test MathExtras.SaturatingMultiply on
multiple buildbots. Reverting until the reason of that is clarified.
Differential Revision: https://reviews.llvm.org/rL307126
llvm-svn: 307135
-If there is a IndVar which is known to be non-negative, and there is a value which is also non-negative,
then signed and unsigned comparisons between them produce the same result. Both of those can be
seen in the same loop. To allow other optimizations to simplify them, we turn all instructions like
%c = icmp slt i32 %iv, %b
to
%c = icmp ult i32 %iv, %b
if both %iv and %b are known to be non-negative.
Differential Revision: https://reviews.llvm.org/D34979
llvm-svn: 307126