The new Darwin backend for LLD is now able to link reasonably large
real-world programs on x86_64. For instance, we have achieved
self-hosting for the X86_64 target, where all LLD tests pass when
building lld with itself on macOS. As such, we would like to make it the
default back-end.
The new port is now named `ld64.lld`, and the old port remains
accessible as `ld64.lld.darwinold`
This [annoucement email][1] has some context. (But note that, unlike
what the email says, we are no longer doing this as part of the LLVM 12
branch cut -- instead we will go into LLVM 13.)
Numerous mechanical test changes were required to make this change; in
the interest of creating something that's reviewable on Phabricator,
I've split out the boring changes into a separate diff (D95905). I plan to
merge its contents with those in this diff before landing.
(@gkm made the original draft of this diff, and he has agreed to let me
take over.)
[1]: https://lists.llvm.org/pipermail/llvm-dev/2021-January/147665.html
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D95204
Also change some options that have different semantics (cause confusion) in llvm-readelf mode:
-s => -S
-t => --symbols
-sd => --section-data
llvm-svn: 359651
An upcoming commit will change how we choose to reference a dylib. Currently
dylibs are only given an LC_LOAD_DYLIB in the final image if an atom is used.
This is different from ld64 which adds the load command when the dylib is referenced
on the cmdline.
In order to change this behaviour, we need libSystem.yaml to actually contain a mach header
so that it is parsed as a dylib, instead of currently being parsed as a normalised file.
To get a mach header, we also require an arch, so now we have one libsystem per arch and
all the tests have been updated to choose the correct one.
llvm-svn: 278372
loadFile could load mulitple files just because yaml has a feature for
putting multiple documents in one file.
Designing a linker around what yaml can do seems like a bad idea to
me. This patch changes it to read a single file.
There are further improvements to be done to the api and they
will follow shortly.
llvm-svn: 235724
Arm code has two instruction encodings "thumb" and "arm". When branching from
one code encoding to another, you need to use an instruction that switches
the instruction mode. Usually the transition only happens at call sites, and
the linker can transform a BL instruction in BLX (or vice versa). But if the
compiler did a tail call optimization and a function ends with a branch (not
branch and link), there is no pc-rel BX instruction.
The ShimPass looks for pc-rel B instructions that will need to switch mode.
For those cases it synthesizes a shim which does the transition, then modifies
the original atom with the B instruction to target to the shim atom.
llvm-svn: 219655
Split up the CRuntimeFile into one part for output types that need an entry
point and another part for output types that use stubs.
Add file 'test/mach-o/Inputs/libSystem.yaml' for use by test cases that
use -dylib and therefore may now need the helper symbol in libSystem.dylib.
llvm-svn: 215602
All iOS arm processor support switching between arm and thumb mode at call sites
by using the BLX instruction (instead of BL). But the compiler does not know
the implementation mode for extern functions, so the linker must update BL/BLX
instructions to match what is linked is actually linked together. In addition,
pointers to functions (such as vtables) must have the low bit set if the target
of the pointer is a thumb mode function.
llvm-svn: 214140