Make sure that the shell tests use the same python interpreter as the
rest of the build instead of picking up `python` from the PATH.
It would be nice if we could use the _disallow helper, but that triggers
on invocations that specify python as the scripting language.
Rosetta crashlogs can have their own thread register state. Unlike the
other registers which ware directly listed under "threadState", the
Rosetta registers are nested under their own key in the JSON, as
illustrated below:
{
"threadState":
{
"rosetta":
{
"tmp2":
{
"value": 4935057216
},
"tmp1":
{
"value": 4365863188
},
"tmp0":
{
"value": 18446744073709551615
}
}
}
}
ClangUserExpression.h is relying on the forward declaration of
ClangExpressionParser in ClangFunctionCaller.h. This patch moves the
forward declaration to ClangUserExpression.h.
As raised here: https://lists.llvm.org/pipermail/llvm-dev/2021-November/153881.html
Now that VS2022 is on general release, LLVM is expected to build on VS2017, VS2019 and VS2022, which is proving hazardous to maintain due to changes in behaviour including preprocessor and constexpr changes. Plus of the few developers that work with VS, many have already moved to VS2019/22.
This patch proposes to raise the minimum supported version to VS2019 (16.x) - I've made the hard limit 16.0 or later, with the soft limit VS2019 16.7 - older versions of VS2019 are "allowed" (at your own risk) via the LLVM_FORCE_USE_OLD_TOOLCHAIN cmake flag.
Differential Revision: https://reviews.llvm.org/D114639
The existing instructions for lldb on Windows can be more explicit. This adds a few details on how to install various components and the easiest way to get to a working build.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D118425
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
This means sve2 is enabled by default and the v8.8 mops (memcpy
and memset acceleration instructions) and HBC (hinted conditional
branch) extensions can be disassembled.
v9.3-a is equivalent to v8.8-a except that in v9.0-a sve2 was
enabled by default so v9.3-a includes that too.
MTE remains an optional extension, only enabled for specific CPUs.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D118358
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
We have been noticing issues with the lldb bots on builds using versions below clang 14 and dwarf 2, so to make sure we can get clean builds for a while, we are disabling the tests for those versions
Differential Revision: https://reviews.llvm.org/D118395
There seems to be an issue on x86_64 when launching a ScriptdProcess.
This disables temporarely the test that causes the bot to timeout until
I finish investigating the issue.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This test is completely nondeterministic, environment-dependent and does
not test what it was supposed to test (reverting the associated patch
does not make it fail).
I tried to figure out what the patch was meant to fix to see if I can
create a better test with the current tools, but I was not able to
understand the problem (it sounds like it has something to do with local
classes, but I don't understand the details).
Add Thread::GetSiginfo() and SBThread::GetSiginfo() methods to retrieve
the siginfo value from server.
Differential Revision: https://reviews.llvm.org/D118055
Support synthesizing the siginfo_t type from the Platform plugin.
This type is going to be used by LLDB client to process the raw siginfo
data received from lldb-server without the necessity of relying
on target's debug info being present.
Differential Revision: https://reviews.llvm.org/D117707
In the rush to get the bot green, I did not realize I was building the
file with -gsplit-dwarf, and therefore the yaml ended up referring to a
file I did not check it.
This rebuilds the file without split dwarf.
Currently, running the test suite with LLVM_ENABLE_EXPENSIVE_CHECKS=On
causes a couple of tests to fail. This happens because they expect a
certain order of variables (all of them happen to use the "target
variable" command, but other lookup functions should suffer from the
same issues), all of which have the same name. Sort algorithms often
preserve the order of equivalent elements (in this case the entries in
the NameToDIE map), but that not guaranteed, and
LLVM_ENABLE_EXPENSIVE_CHECKS stresses that by pre-shuffling all inputs
before sorting.
While this could easily be fixed by relaxing the test expectations,
having a deterministic output seems like a worthwhile goal,
particularly, as this could have bigger consequences than just a
different print order -- in some cases we just pick the first entry that
we find, whatever that is. Therefore this patch makes the sort
deterministic by introducing another sort key -- UniqueCString::Sort
gets a value comparator functor, which can be used to sort elements with
the same name -- in the DWARF case we use DIERef::operator<, which
roughly equals the order in which the entries appear in the debug info,
and matches the current "accidental" order.
Using a extra functor seemed preferable to using stable_sort, as the
latter allocates extra O(n) of temporary memory.
I observed no difference in debug info parsing speed with this patch
applied.
Differential Revision: https://reviews.llvm.org/D118251
In D117744, llvm removed writing support for this format, breaking the
test. We may eventually want to remove reading support as well, but for
now I have converted the test to a yaml file to maintain coverage.
This patch introduces a new SBAPI method: `SBModule::IsFileBacked`
As the name suggests, it tells the user if the module's object file is
on disk or in memory.
rdar://68538278
Differential Revision: https://reviews.llvm.org/D118261
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Remove ConstString::StaticMemorySize as it is unused and superseded by
GetMemoryStats. It is referenced in a bunch of doc comments but I don't
really understand why. My best guess it that the comments were
copy-pasted from ConstString::MemorySize() even though it didn't make
sense there either. The implementation of StaticMemorySize was being
called on the MemoryPool, not on the ConstString itself.
Differential revision: https://reviews.llvm.org/D118091
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This adds an option --show-tags to "memory read".
(lldb) memory read mte_buf mte_buf+32 -f "x" -s8 --show-tags
0x900fffff7ff8000: 0x0000000000000000 0x0000000000000000 (tag: 0x0)
0x900fffff7ff8010: 0x0000000000000000 0x0000000000000000 (tag: 0x1)
Tags are printed on the end of each line, if that
line has any tags associated with it. Meaning that
untagged memory output is unchanged.
Tags are printed based on the granule(s) of memory that
a line covers. So you may have lines with 1 tag, with many
tags, no tags or partially tagged lines.
In the case of partially tagged lines, untagged granules
will show "<no tag>" so that the ordering is obvious.
For example, a line that covers 2 granules where the first
is not tagged:
(lldb) memory read mte_buf-16 mte_buf+16 -l32 -f"x" --show-tags
0x900fffff7ff7ff0: 0x00000000 <...> (tags: <no tag> 0x0)
Untagged lines will just not have the "(tags: ..." at all.
Though they may be part of a larger output that does have
some tagged lines.
To do this I've extended DumpDataExtractor to also print
memory tags where it has a valid execution context and
is asked to print them.
There are no special alignment requirements, simply
use "memory read" as usual. All alignment is handled
in DumpDataExtractor.
We use MakeTaggedRanges to find all the tagged memory
in the current dump, then read all that into a MemoryTagMap.
The tag map is populated once in DumpDataExtractor and re-used
for each subsequently printed line (or recursive call of
DumpDataExtractor, which some formats do).
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D107140
The tag map holds a sparse set of memory tags and allows
you to query ranges for tags.
Granules that do not have tags will be set to llvm::None.
to keep the ordering intact. If there are no tags for the
requested range we'll just return an empty result so that
callers don't need to check that all values are llvm::None.
This will be combined with MemoryTagManager's MakeTaggedRanges:
* MakeTaggedRanges
* Read from all those ranges
* Insert the results into the tag map
* Give the tag map to whatever needs to print tags
Which in this case will be "memory read"/DumpDataExtractor.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D112825
This is to be used when you want to know what subranges
of a larger range have memory tagging. Like MakeTaggedRange
but memory without tags is skipped and you get a list of ranges back.
Will be used later by DumpDataExtractor to show memory tags.
MakeTaggedRanges assumes that the memory regions it is
given are sorted in ascending order and do not overlap.
For the current use case where you get regions from
GetMemoryRegions and are on some Linux like OS, this is
reasonable to assume.
I've used asserts to check those conditions. In future
any API binding will check them up front to prevent a crash.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D112824
This patch makes use of c++ type checking and scoped enums to make
logging statements shorter and harder to misuse.
Defines like LIBLLDB_LOG_PROCESS are replaces with LLDBLog::Process.
Because it now carries type information we do not need to worry about
matching a specific enum value with the right getter function -- the
compiler will now do that for us.
The main entry point for the logging machinery becomes the GetLog
(template) function, which will obtain the correct Log object based on
the enum type. It achieves this through another template function
(LogChannelFor<T>), which must be specialized for each type, and should
return the appropriate channel object.
This patch also removes the ability to log a message if multiple
categories are enabled simultaneously as it was unused and confusing.
This patch does not actually remove any of the existing interfaces. The
defines and log retrieval functions are left around as wrappers around
the new interfaces. They will be removed in follow-up patch.
Differential Revision: https://reviews.llvm.org/D117490
I considered keeping this change strictly downstream. Since we still
have a bunch of places that check for Python 2, I figured it doesn't
harm to land it upstream and avoid the conflict when I eventually do
remove them (hopefully soon!).
Add statistics about the memory usage of the string pool. I'm
particularly interested in the memory used by the allocator, i.e. the
number of bytes actually used by the allocator it self as well as the
number of bytes allocated through the allocator.
Differential revision: https://reviews.llvm.org/D117914
This patch updates `dummy_scripted_process.py` to report the dummy
thread correctly to reflect the changes introduced by `d3e0f7e`.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch changes the `ScriptedInterface::ErrorWithMessage` method to
make it `static` which makes it easier to call.
The patch also updates its various call sites to reflect this change.
Differential Revision: https://reviews.llvm.org/D117374
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>