SemaDeclAttr to the first argument. This makes them follow the very
consistent policy elsewhere in Sema for helper functions.
Original patch by Caitlin Sadowski, with some tweaking by me.
llvm-svn: 134290
conventional in the rest of Clang's codebase, and closer to the current
style recommendations. It also makes the code more internally consistent
as FD, VD, etc are used frequently for particular decl variables.
Patch by Caitlin Sadowski.
llvm-svn: 134288
-Remove unnecessary 'return'.
-Remove unnecessary 'if' check (llvm_unreachable make sure attrStr will be non-null)
-Add a test of transferring ownership to a reference cast type.
llvm-svn: 134285
cast type has no ownership specified, implicitly "transfer" the ownership of the cast'ed type
to the cast type:
id x;
(NSString**)&x; // Casting as (__strong NSString**).
llvm-svn: 134275
newly introduced Sema::BuildVectorLiteral.
-Make Sema::ActOnCastExpr handle a vector initializer both when the cast'ed expression
is a ParenListExpr and when it is a ParenExpr.
-Ultimately make Sema::ActOnParenOrParenListExpr independent of what the cast type was.
llvm-svn: 134274
cast type has no ownership specified, implicitly "transfer" the ownership of the cast'ed type
to the cast type:
id x;
static_cast<NSString**>(&x); // Casting as (__strong NSString**).
This currently only works for C++ named casts, C casts to follow.
llvm-svn: 134273
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
Patch by Caitlin Sadowski.
Unfortunately, this attribute doesn't seem to have a single test. It is
only mentioned in comments in one test, and as a string literal in
a copy of some Clang code checked in as a test for the Indexer. =[ It
dates from 2009 r74280 as part of OpenCL 1.0.
llvm-svn: 134136
to the same declaration when correcting typos. This is done by
essentially sorting the corrections as they're added.
Original patch by Kaelyn Uhrain, but modified for style and correctness
by accounting for more than just the textual spelling.
This still is a bit of a WIP hack to make this deterministic. Kaelyn
(and myself) are working on a more principled solution going forward.
llvm-svn: 134038
up several places where we never expect to have NULL pointers to assert
early.
This fixes a valgrind error within CorrectTypo, but not the
non-determinism.
llvm-svn: 134032
vector<int>
to
std::vector<int>
Patch by Kaelyn Uhrain, with minor tweaks + PCH support from me. Fixes
PR5776/<rdar://problem/8652971>.
Thanks Kaelyn!
llvm-svn: 134007
for the '(' and ')' around the initializer unless we actually have an
initializer. Fixes PR10197, an issue where we were value-initializing
rather than default-initializing.
llvm-svn: 133913
of a single if block. This is really annoying to track down and test.
Silly changes to the test case caused it to stop showing up. I wish
there were a more concrete way of asserting that a note attaches to the
intended diagnostic.
This fixes PR10195.
llvm-svn: 133907
arithmetic into a couple of common routines. Use these to make the
messages more consistent in the various contexts, especially in terms of
consistently diagnosing binary operators with invalid types on both the
left- and right-hand side. Also, improve the grammar and wording of the
messages some, handling both two pointers and two (different) types.
The wording of function pointer arithmetic diagnostics still strikes me
as poorly phrased, and I worry this makes them slightly more awkward if
more consistent. I'm hoping to fix that with a follow-on patch and test
case that will also make them more helpful when a typedef or template
type parameter makes the type completely opaque.
Suggestions on better wording are very welcome, thanks to Richard Smith
for some initial help on that front.
llvm-svn: 133906
When performing semantic analysis on a member declaration, fix the check for whether we are declaring a function to check for parenthesized declarators, declaration via decltype, etc.
Also fix the semantic check to not treat FuncType* as a function type.
llvm-svn: 133862
declaration, determine whether the declaration will end up declaring a
function using semantic criteria (e.g., it will have function type)
rather than purely syntactic criteria (e.g., it has the form of a
function declarator). Fixes <rdar://problem/9670557>.
llvm-svn: 133854
to turn off warning on those properties which follow Cocoa naming
convention for retaining objects and yet they were not meant for
such purposes. Also, perform consistancy checking for declared
getters of such methods. // rdar://9636091
llvm-svn: 133849
conventions. I then discovered a typo in the using declaration bit in
LookupSpecialMember. This led to discovering [namespace.udecl]p15, which
clang implements incorrectly. Thus I've added a comment and implemented
the code consistently with the rest of clang - that is incorrectly.
And because I don't want to include tests of something incorrect, I've
ripped the test out.
llvm-svn: 133784
and into a new file, SemaExprMember.cpp, bringing SemaExpr.cpp just
under 10,000 lines of code (ugh). No functionality change, although I
intend to do some refactoring of this code to address PR8368 at some
point in the "near" future.
llvm-svn: 133674
retain/release the temporary object appropriately. Previously, we
would only perform the retain/release operations when the reference
would extend the lifetime of the temporary, but this does the wrong
thing across calls.
llvm-svn: 133620
lifetime is well-known and restricted, cleaning them up manually is easy to miss and cause a leak.
Use it to plug the leaking of TemplateIdAnnotation objects. rdar://9634138.
llvm-svn: 133610
FunctionTemplateDecl. I'm not quite sure what else it could be, though,
and would appreciate some insight.
This ought to fix the broken builds
llvm-svn: 133600
lookup. Previously, it was breaking self-host, but it's been a week and
a half and I can't reproduce, so I need to see if it's still failing.
llvm-svn: 133581
__builtin___CFStringMakeConstantString and CF typed function calls
with explicit cf_returns_retained/cf_returns_not_retained attributes.
// rdar://9544832
llvm-svn: 133535
of: a + b ? x : y. In our testing of this flag we've yet to hit a single
case where the existing precedence was correct, so we should suggest
grouping the ?: first.
llvm-svn: 133526
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
(or follow up) extern declaration with weak_import as
an actual definition. make clang follows this behavior.
// rdar://9538608
llvm-gcc treats an extern declaration with weak_import
llvm-svn: 133450
pointers I found while working on the NULL arithmetic warning. We here
always assuming the LHS was the pointer, instead of using the selected
pointer expression.
llvm-svn: 133428
effectively that this abstraction simply doesn't exist. That is
highlighted by the fact that by using it we were papering over a more
serious error in this warning: the fact that we warned for *invalid*
constructs involving member pointers and block pointers.
I've fixed the obvious issues with the warning here, but this is
confirming an original suspicion that this warning's implementation is
flawed. I'm looking into how we can implement this more reasonably. WIP
on that front.
llvm-svn: 133425
This makes 'isPointerLikeType' a little less confusing, and pulls the
decay check into a separate interface that is much more clear and
concrete. Also, just implement these as logical wrappers around other
predicates. Having a switch based implementation isn't likely to be
necessary. We can try to optimize them later if they show up on
a profile.
llvm-svn: 133405
Trieu, and fix them by checking for array and function types as well as
pointer types.
I've added a predicate method on Type to bundle together the logic we're
using here: isPointerLikeType(). I'd welcome better names for this
predicate, this is the best I came up with. It's implemented as a switch
to be a touch lighter weight than all the chained isa<...> casts that
would result otherwise.
llvm-svn: 133383
deducing template parameter types. Recently Clang began enforcing the
more strict checking that the argument type and the deduced function
parameter type (after substitution) match, but that only consideres
qualification conversions.
One problem with this patch is that we check noreturn conversions and
qualification conversions independently. If a valid conversion would
require *both*, perhaps interleaved with each other, it will be
rejected. If this actually occurs (I'm not yet sure it does) and is in
fact a problem (I'm not yet sure it is), there is a FIXME to implement
more intelligent conversion checking.
However, this step at least allows Clang to resume accepting valid code
we're seeing in the wild.
llvm-svn: 133327
silently dropped ownership qualifiers that were being applied to
ownership-qualified, substituted type that was *not* a substituted
template type parameter. We now provide a diagnostic in such cases,
and recover by dropping the added qualifiers.
Document this behavior in the ARC specification.
llvm-svn: 133309
ownership-unqualified retainable object type as __strong. This allows
us to write, e.g.,
std::vector<id>
and we'll infer that the vector's element types have __strong
ownership semantics, which is far nicer than requiring:
std::vector<__strong id>
Note that we allow one to override the ownership qualifier of a
substituted template type parameter, e.g., given
template<typename T>
struct X {
typedef __weak T type;
};
X<id> is treated the same as X<__strong id>. At instantiation type,
the __weak in "__weak T" overrides the (inferred or specified)
__strong on the template argument type, so that we can still provide
metaprogramming transformations.
This is part of <rdar://problem/9595486>.
llvm-svn: 133303
they should still be officially __strong for the purposes of errors,
block capture, etc. Make a new bit on variables, isARCPseudoStrong(),
and set this for 'self' and these enumeration-loop variables. Change
the code that was looking for the old patterns to look for this bit,
and change IR generation to find this bit and treat the resulting
variable as __unsafe_unretained for the purposes of init/destroy in
the two places it can come up.
llvm-svn: 133243
storage specifier is different from the storage specifier on the
template. If that storage specifier is the same, then we only warn.
Thanks to John for the prodding.
llvm-svn: 133236
C++, which means:
- binding the temporary as needed in Sema, so that we generate the
appropriate call to the destructor, and
- emitting the compound literal into the appropriate location for
the aggregate, rather than trying to emit it as a temporary and
memcpy() it.
Fixes PR10138 / <rdar://problem/9615901>.
llvm-svn: 133235
__builtin_ versions of these functions as well as the normal function
versions, so that it works on platforms where memset/memcpy/memmove
are macros that map down to the builtins (e.g., Darwin). Fixes
<rdar://problem/9372688>.
llvm-svn: 133173
checks that the deduced argument type for a function call matches the
actual argument type provided. The only place we've found where the
consistency checking should actually cause template argument deduction
failure is due to qualifier differences that don't fall into the realm
of qualification conversions (which are *not* checked when we
initially perform deduction). However, we're performing the full
checking as specified in the standard to ensure that no other cases
exist.
Fixes PR9233 / <rdar://problem/9039590>.
llvm-svn: 133163
and the programmer intended to write 'sizeof(*p)'. There are several
elements to the new version:
1) The actual expressions are compared in order to more accurately flag
the case where the pattern that works for an array has been used, or
a '*' has been omitted.
2) Only do a loose type-based check for record types. This prevents us
from warning when we happen to be copying around chunks of data the
size of a pointer and the pointer types for the sizeof and
source/dest match.
3) Move all the diagnostics behind the runtime diagnostic filter. Not
sure this is really important for this particular diagnostic, but
almost everything else in SemaChecking.cpp does so.
4) Make the wording of the diagnostic more precise and informative. At
least to my eyes.
5) Provide highlighting for the two expressions which had the unexpected
similarity.
6) Place this diagnostic under a flag: -Wsizeof-pointer-memaccess
This uses the Stmt::Profile system for computing #1. Because of the
potential cost, this is guarded by the warning flag. I'd be interested
in feedback on how bad this is in practice; I would expect it to be
quite cheap in practice. Ideas for a cheaper / better way to do this are
also welcome.
The diagnostic wording could likely use some further wordsmithing.
Suggestions welcome here. The goals I had were to: clarify that its the
interaction of 'memset' and 'sizeof' and give more reasonable
suggestions for a resolution.
An open question is whether these diagnostics should have the note
attached for silencing by casting the dest/source pointer to void*.
llvm-svn: 133155
argument types for mem{set,cpy,move}. Character pointers, much like void
pointers, often point to generic "memory", so trying to check whether
they match the type of the argument to 'sizeof' (or other checks) is
unproductive and often results in false positives.
Nico, please review; does this miss any of the bugs you were trying to
find with this warning? The array test case you had should be caught by
the array-specific sizeof warning I think.
llvm-svn: 133136
be more consistent in how parenthesized ranges which hit macros are
handled. Also makes the code significantly shorter, and the diagnostics
when macros are present a bit more useful.
Pair programmed w/ Matthew.
llvm-svn: 133122
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
were just punting on template argument deduction for a number of type
nodes. Most of them, obviously, didn't matter.
As a consequence of this, make extended vector types (via the
ext_vector_type attribute) actually work properly for several
important cases:
- If the attribute appears in a type-id (i.e, not attached to a
typedef), actually build a proper vector type
- Build ExtVectorType whenever the size is constant; previously, we
were building DependentSizedExtVectorType when the size was constant
but the type was dependent, which makes no sense at all.
- Teach template argument deduction to handle
ExtVectorType/DependentSizedExtVectorType.
llvm-svn: 133060
before the template parameters have acquired a proper context (e.g.,
because the enclosing context has yet to be built), provide empty
parameter lists for all outer template parameter scopes to inhibit any
substitution for those template parameters. Fixes PR9643 /
<rdar://problem/9251019>.
llvm-svn: 133055
Change the output for -Wshift-overflow and
-Wshift-sign-overflow to an unsigned hexadecimal. It makes
more sense for looking at bits than a signed decimal does.
Also, change the diagnostic's wording from "overrides"
to "sets".
This uses a new optional argument in APInt::toString()
that adds the '0x' prefix to hexademical numbers.
This fixes PR 9651.
Patch by nobled@dreamwidth.org!
llvm-svn: 133033
as constant size arrays. This has slightly different semantics in some insane cases, but allows
us to accept some constructs that GCC does. Continue to be pedantic in -std=c99 and other
modes. This addressed rdar://8733881 - error "variable-sized object may not be initialized"; g++ accepts same code
llvm-svn: 132983
- Move a test from test/SemaTemplate/instantiate-expr-3.cpp, it did not belong there
- Incomplete and abstract types are considered hard errors
llvm-svn: 132979
struct {
typedef int A = 0;
};
According to the C++11 standard, this is not ill-formed, but does not have any ascribed meaning. We can't reasonably accept it, so treat it as ill-formed.
Also switch C++ from an incorrect 'fields can only be initialized in constructors' diagnostic for this case to C's 'illegal initializer (only variables can be initialized)'
llvm-svn: 132890
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868