The intent of the test is to check that array lengths greater than
UINT_MAX work properly. Change the test to stress that scenario, without
triggering pointer overflow UB.
Caught by a WIP pointer overflow checker in clang.
Differential Revision: https://reviews.llvm.org/D33149
llvm-svn: 304353
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
llvm-svn: 304226
This is super awkward, but GCC doesn't let us have template visible when
an argument is an inline function and -fvisibility-inlines-hidden is
used.
llvm-svn: 304175
error C2971: 'llvm::ManagedStatic': template parameter 'Creator': 'CreateDefaultTimerGroup': a variable with non-static storage duration cannot be used as a non-type argument
llvm-svn: 304157
With fix of uninitialized variable.
Original commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304078
I've taken the approach from the LoopInfo test:
* Rather than running in the pass manager just build the analyses manually
* Split out the common parts (makeLLVMModule, runWithDomTree) into helpers
Differential Revision: https://reviews.llvm.org/D33617
llvm-svn: 304061
Summary:
This fixes introduction of an incorrect inttoptr/ptrtoint pair in
the included test case which makes use of non-integral pointers. I
suspect there are more cases like this left, but this takes care of
the one I was seeing at the moment.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33129
llvm-svn: 304058
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses with use of llvm::LoadedObjectInfo
interface. We assigned file offsets as addressed. Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well. That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 304002
With fix of test compilation.
Initial commit message:
This change is intended to use for LLD in D33183.
Problem we have in LLD when building .gdb_index is that we need to know section
which address range belongs to.
Previously it was solved on LLD side by providing fake section addresses
with use of llvm::LoadedObjectInfo interface. We assigned file offsets as addressed.
Then after obtaining ranges lists, for each range we had to find section ID's.
That not only was slow, but also complicated implementation and was the reason
of incorrect behavior when
sections share the same offsets, like D33176 shows.
This patch makes DWARF parsers to return section index as well.
That solves problem mentioned above.
Differential revision: https://reviews.llvm.org/D33184
llvm-svn: 303983
Running unittests/Support/DynamicLibrary/DynamicLibraryTests fails when LLVM is
configured with LLVM_EXPORT_SYMBOLS_FOR_PLUGINS=ON, because the test's version
script only contains symbols extracted from the static libraries, that the test
links with, but not those from the main object/executable itself. The patch
explicitly exports the one symbol needed by the test.
This change fixes https://bugs.llvm.org/show_bug.cgi?id=32893
Patch authored by Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D33490
llvm-svn: 303979
block.
This allows writing much more natural and readable range based for loops
directly over the PHI nodes. It also takes advantage of the same tricks
for terminating the sequence as the hand coded versions.
I've replaced one example of this mostly to showcase the difference and
I've added a unit test to make sure the facilities really work the way
they're intended. I want to use this inside of SimpleLoopUnswitch but it
seems generally nice.
Differential Revision: https://reviews.llvm.org/D33533
llvm-svn: 303964
Merging two type streams is one of the most time consuming
parts of generating a PDB, and as such it needs to be as
fast as possible. The visitor abstractions used for interoperating
nicely with many different types of inputs and outputs have
been used widely and help greatly for testability and implementing
tools, but the abstractions build up and get in the way of
performance.
This patch removes all of the visitation stuff from the type
stream merger, essentially re-inventing the leaf / member switch
and loop, but at a very low level. This allows us many other
optimizations, such as not actually deserializing *any* records
(even member records which don't describe their own length), as
the operation of "figure out how long this record is" is somewhat
faster than "figure out how long this record *and* get all its
fields out". Furthermore, whereas before we had to deserialize,
re-write type indices, then re-serialize, now we don't have to
do any of those 3 steps. We just find out where the type indices
are and pull them directly out of the byte stream and re-write
them.
This is worth a 50-60% performance increase. On top of all other
optimizations that have been applied this week, I now get the
following numbers when linking lld.exe and lld.pdb
MSVC: 25.67s
Before This Patch: 18.59s
After This Patch: 8.92s
So this is a huge performance win.
Differential Revision: https://reviews.llvm.org/D33564
llvm-svn: 303935
It was using the number of blocks of the entire PDB file as the number
of blocks of each stream that was created. This was only an issue in
the readLongestContiguousChunk function, which was never called prior.
This bug surfaced when I updated an algorithm to use this function and
the algorithm broke.
llvm-svn: 303916
Summary: This allows pthread_self to be pulled out of a loop by LICM.
Reviewers: hfinkel, arsenm, davide
Reviewed By: davide
Subscribers: davide, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D32782
llvm-svn: 303495
getParamAlignment expects an argument number, not an AttributeList
index.
Johan Englan, who works on LDC, found this bug and told me about it off
list.
llvm-svn: 303458
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
Summary:
This patch adds udiv/sdiv/urem/srem/udivrem/sdivrem methods that can divide by a uint64_t. This makes division consistent with all the other arithmetic operations.
This modifies the interface of the divide helper method to work on raw arrays instead of APInts. This way we can pass the uint64_t in for the RHS without wrapping it in an APInt. This required moving all the Quotient and Remainder allocation handling up to the callers. For udiv/urem this was as simple as just creating the Quotient/Remainder with the right size when they were declared. For udivrem we have to rely on reallocate not changing the contents of the variable LHS or RHS is aliased with the Quotient or Remainder APInts. We also have to zero the upper bits of Remainder and Quotient that divide doesn't write to if lhsWords/rhsWords is smaller than the width.
I've update the toString method to use the new udivrem.
Reviewers: hans, dblaikie, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33310
llvm-svn: 303431
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
driver-mode recognition in clang (this is because the sysctl method
always returns one and only one executable path, even for an executable
with multiple links):
Fix DynamicLibraryTest.cpp on FreeBSD and NetBSD
Summary:
After rL301562, on FreeBSD the DynamicLibrary unittests fail, because
the test uses getMainExecutable("DynamicLibraryTests", Ptr), and since
the path does not contain any slashes, retrieving the main executable
will not work.
Reimplement getMainExecutable() for FreeBSD and NetBSD using sysctl(3),
which is more reliable than fiddling with relative or absolute paths.
Also add retrieval of the original argv[] from the GoogleTest framework,
to use as a fallback for other OSes.
Reviewers: emaste, marsupial, hans, krytarowski
Reviewed By: krytarowski
Subscribers: krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D33171
llvm-svn: 303285
We have to check gCrashRecoveryEnabled before using __try.
In other words, SEH works too well and we ended up recovering from
crashes in implicit module builds that we weren't supposed to. Only
libclang is supposed to enable CrashRecoveryContext to allow implicit
module builds to crash.
llvm-svn: 303279
Summary:
It avoids problems when other libraries raise exceptions. In particular,
OutputDebugString raises an exception that the debugger is supposed to
catch and suppress. VEH kicks in first right now, and that is entirely
incorrect.
Unfortunately, GCC does not support SEH, so I've kept the old buggy VEH
codepath around. We could fix it with SetUnhandledExceptionFilter, but
that is not per-thread, so a well-behaved library shouldn't set it.
Reviewers: zturner
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33261
llvm-svn: 303274