Materializing something like "-3" can be done as 2 instructions:
MOV r0, #3
MVN r0, r0
This has a cost of 2, not 3. It looks like we were already trying to detect this pattern in TII::getIntImmCost(), but were taking the complement of the zero-extended value instead of the sign-extended value which is unlikely to ever produce a number < 256.
There were no tests failing after changing this... :/
llvm-svn: 280928
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.
Differential Revision: http://reviews.llvm.org/D21183
llvm-svn: 275382
This is a follow-up for r273544 and r273853.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also marks them as obsolete.
Differential Revision: http://reviews.llvm.org/D21796
llvm-svn: 274616
Summary:
This fixes bug: https://llvm.org/bugs/show_bug.cgi?id=28282
Currently the cost model of constant hoisting checks the bit width of the data type of the constants.
However, the actual immediate value is small enough and not need to be hoisted.
This patch checks for the actual bit width needed for the constant.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21668
llvm-svn: 274073
Divisions by a constant can be converted into multiplies which are usually
cheaper, but this isn't possible if the constant gets separated (particularly
in loops). Fix this by telling ConstantHoisting that the immediate in a DIV is
cheap.
I considered making the check generic, but neither AArch64 (strangely) nor x86
showed any benefit on the tests I had.
llvm-svn: 266464
At some point, ARM stopped getting any benefit from ConstantHoisting because
the pass called a different variant of getIntImmCost. Reimplementing the
correct variant revealed some problems, however:
+ ConstantHoisting was modifying switch statements. This is simply invalid,
the cases must remain integer constants no matter the notional cost.
+ ConstantHoisting was mangling alloca instructions in the entry block. These
should be handled by FrameLowering, so constants actually have a cost of 0.
Worse, the resulting bitcasts meant they became dynamic allocas.
rdar://25707382
llvm-svn: 266260
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).
DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.
One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.
Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.
Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!
llvm-svn: 255089
The underlying issues surrounding codegen for 32-bit vselects have been resolved. The pessimistic costs for 64-bit vselects remain due to the bad
scalarization that is still happening there.
I tested this on A57 in T32, A32 and A64 modes. I saw no regressions, and some improvements.
From my benchmarks, I saw these improvements in A57 (T32)
spec.cpu2000.ref.177_mesa 5.95%
lnt.SingleSource/Benchmarks/Shootout/strcat 12.93%
lnt.MultiSource/Benchmarks/MiBench/telecomm-CRC32/telecomm-CRC32 11.89%
I also measured A57 A32, A53 T32 and A9 T32 and found no performance regressions. I see much bigger wins in third-party benchmarks with this change
Differential Revision: http://reviews.llvm.org/D14743
llvm-svn: 253349
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
llvm-svn: 251490
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
llvm-svn: 251382
Summary:
This change limits the minimum cost of an insert/extract
element operation to 2 in cases where this would result
in mixing of NEON and VFP code.
Reviewers: rengolin
Subscribers: mssimpso, aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D12030
llvm-svn: 245225
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
Summary:
Fix the cost of interleaved accesses for ARM/AArch64.
We were calling getTypeAllocSize and using it to check
the number of bits, when we should have called
getTypeAllocSizeInBits instead.
This would pottentially cause the vectorizer to
generate loads/stores and shuffles which cannot
be matched with an interleaved access instruction.
No performance changes are expected for now since
matching/generating interleaved accesses is still
disabled by default.
Reviewers: rengolin
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D11524
llvm-svn: 243270
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
DataLayout is no longer optional. It was initialized with or without
a DataLayout, and the DataLayout when supplied could have been the
one from the TargetMachine.
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11021
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241774
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation. By default, it's not an expensive operation. This keeps the default behavior the same as before. The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: t.p.northover, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6936
llvm-svn: 228263
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
llvm-svn: 227685
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
llvm-svn: 227669
Cross-class copies being expensive is actually a trait of the microarchitecture, but as I haven't yet seen an example of a microarchitecture where they're cheap it seems best to just enable this by default, covering the non-mcpu build case.
llvm-svn: 217674
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
llvm-svn: 216371
This patch adds support to recognize patterns such as fadd,fsub,fadd,fsub.../add,sub,add,sub... and
vectorizes them as vector shuffles if they are profitable.
These patterns of vector shuffle can later be converted to instructions such as addsubpd etc on X86.
Thanks to Arnold and Hal for the reviews. http://reviews.llvm.org/D4015
llvm-svn: 211339
the stack of the analysis group because they are all immutable passes.
This is made clear by Craig's recent work to use override
systematically -- we weren't overriding anything for 'finalizePass'
because there is no such thing.
This is kind of a lame restriction on the API -- we can no longer push
and pop things, we just set up the stack and run. However, I'm not
invested in building some better solution on top of the existing
(terrifying) immutable pass and legacy pass manager.
llvm-svn: 203437
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
By vectorizing a series of srl, or, ... instructions we have obfuscated the
intention so much that the backend does not know how to fold this code away.
radar://15336950
llvm-svn: 193573
Use it to avoid repeating ourselves too often. Also store MVT::SimpleValueType
in the TTI tables so they can be statically initialized, MVT's constructors
create bloated initialization code otherwise.
llvm-svn: 188095
This patch fixes the multiple breakages on ARM test-suite after the SLP
vectorizer was introduced by default on O3. The problem was an illegal
vector type on ARMTTI::getCmpSelInstrCost() <3 x i1> which is not simple.
The guard protects this code from breaking (cause of the problems) but
doesn't fix the issue that is generating the odd vector in the first
place, which also needs to be investigated.
llvm-svn: 187658
Fixes a 35% degradation compared to unvectorized code in
MiBench/automotive-susan and an equally serious regression on a private
image processing benchmark.
radar://14351991
llvm-svn: 186188
Address calculation for gather/scather in vectorized code can incur a
significant cost making vectorization unbeneficial. Add infrastructure to add
cost.
Tests and cost model for targets will be in follow-up commits.
radar://14351991
llvm-svn: 186187
Rather than just splitting the input type and hoping for the best, apply
a bit more cleverness. Just splitting the types until the source is
legal often leads to an illegal result time, which is then widened and a
scalarization step is introduced which leads to truly horrible code
generation. With the loop vectorizer, these sorts of operations are much
more common, and so it's worth extra effort to do them well.
Add a legalization hook for the operands of a TRUNCATE node, which will
be encountered after the result type has been legalized, but if the
operand type is still illegal. If simple splitting of both types
ends up with the result type of each half still being legal, just
do that (v16i16 -> v16i8 on ARM, for example). If, however, that would
result in an illegal result type (v8i32 -> v8i8 on ARM, for example),
we can get more clever with power-two vectors. Specifically,
split the input type, but also widen the result element size, then
concatenate the halves and truncate again. For example on ARM,
To perform a "%res = v8i8 trunc v8i32 %in" we transform to:
%inlo = v4i32 extract_subvector %in, 0
%inhi = v4i32 extract_subvector %in, 4
%lo16 = v4i16 trunc v4i32 %inlo
%hi16 = v4i16 trunc v4i32 %inhi
%in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
%res = v8i8 trunc v8i16 %in16
This allows instruction selection to generate three VMOVN instructions
instead of a sequences of moves, stores and loads.
Update the ARMTargetTransformInfo to take this improved legalization
into account.
Consider the simplified IR:
define <16 x i8> @test1(<16 x i32>* %ap) {
%a = load <16 x i32>* %ap
%tmp = trunc <16 x i32> %a to <16 x i8>
ret <16 x i8> %tmp
}
define <8 x i8> @test2(<8 x i32>* %ap) {
%a = load <8 x i32>* %ap
%tmp = trunc <8 x i32> %a to <8 x i8>
ret <8 x i8> %tmp
}
Previously, we would generate the truly hideous:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #20
bic sp, sp, #7
add r1, r0, #48
add r2, r0, #32
vld1.64 {d24, d25}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
vld1.64 {d18, d19}, [r2:128]
add r1, r0, #16
vmovn.i32 d22, q8
vld1.64 {d16, d17}, [r1:128]
vmovn.i32 d20, q9
vmovn.i32 d18, q12
vmov.u16 r0, d22[3]
strb r0, [sp, #15]
vmov.u16 r0, d22[2]
strb r0, [sp, #14]
vmov.u16 r0, d22[1]
strb r0, [sp, #13]
vmov.u16 r0, d22[0]
vmovn.i32 d16, q8
strb r0, [sp, #12]
vmov.u16 r0, d20[3]
strb r0, [sp, #11]
vmov.u16 r0, d20[2]
strb r0, [sp, #10]
vmov.u16 r0, d20[1]
strb r0, [sp, #9]
vmov.u16 r0, d20[0]
strb r0, [sp, #8]
vmov.u16 r0, d18[3]
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
vldmia sp, {d16, d17}
vmov r0, r1, d16
vmov r2, r3, d17
mov sp, r7
pop {r7}
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
push {r7}
mov r7, sp
sub sp, sp, #12
bic sp, sp, #7
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d20, d21}, [r0:128]
vmovn.i32 d18, q8
vmov.u16 r0, d18[3]
vmovn.i32 d16, q10
strb r0, [sp, #3]
vmov.u16 r0, d18[2]
strb r0, [sp, #2]
vmov.u16 r0, d18[1]
strb r0, [sp, #1]
vmov.u16 r0, d18[0]
strb r0, [sp]
vmov.u16 r0, d16[3]
strb r0, [sp, #7]
vmov.u16 r0, d16[2]
strb r0, [sp, #6]
vmov.u16 r0, d16[1]
strb r0, [sp, #5]
vmov.u16 r0, d16[0]
strb r0, [sp, #4]
ldm sp, {r0, r1}
mov sp, r7
pop {r7}
bx lr
Now, however, we generate the much more straightforward:
.syntax unified
.section __TEXT,__text,regular,pure_instructions
.globl _test1
.align 2
_test1: @ @test1
@ BB#0:
add r1, r0, #48
add r2, r0, #32
vld1.64 {d20, d21}, [r0:128]
vld1.64 {d16, d17}, [r1:128]
add r1, r0, #16
vld1.64 {d18, d19}, [r2:128]
vld1.64 {d22, d23}, [r1:128]
vmovn.i32 d17, q8
vmovn.i32 d16, q9
vmovn.i32 d18, q10
vmovn.i32 d19, q11
vmovn.i16 d17, q8
vmovn.i16 d16, q9
vmov r0, r1, d16
vmov r2, r3, d17
bx lr
.globl _test2
.align 2
_test2: @ @test2
@ BB#0:
vld1.64 {d16, d17}, [r0:128]
add r0, r0, #16
vld1.64 {d18, d19}, [r0:128]
vmovn.i32 d16, q8
vmovn.i32 d17, q9
vmovn.i16 d16, q8
vmov r0, r1, d16
bx lr
llvm-svn: 179989
The ARM backend currently has poor codegen for long sext/zext
operations, such as v8i8 -> v8i32. This patch addresses this
by performing a custom expansion in ARMISelLowering. It also
adds/changes the cost of such lowering in ARMTTI.
This partially addresses PR14867.
Patch by Pete Couperus
llvm-svn: 177380