Classes can be defined in multiple translation units. This means that
the static constexpr data members should have identical initializers in
all translation units. Implement this by giving the reference temporary
linkonce_odr linkage.
llvm-svn: 229900
The LoopInfo in combination with depth_first is used to enumerate the
loops.
Right now -analyze is not yet complete. It only prints the result of
the analysis, the report and the run-time checks. Printing the unsafe
depedences will require a bit more reshuffling which I'd like to do in a
follow-on to this patchset. Unsafe dependences are currently checked
via -debug-only=loop-accesses in the new test.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229898
The only difference between these two is that VectorizerReport adds a
vectorizer-specific prefix to its messages. When LAA is used in the
vectorizer context the prefix is added when we promote the
LoopAccessReport into a VectorizerReport via one of the constructors.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229897
When I split out LoopAccessReport from this, I need to create some temps
so constness becomes necessary.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229896
This allows the analysis to be attempted with any loop. This feature
will be used with -analysis. (LV only requests the analysis on loops
that have already satisfied these tests.)
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229895
Also add pass name as an argument to VectorizationReport::emitAnalysis.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229894
This is a function pass that runs the analysis on demand. The analysis
can be initiated by querying the loop access info via LAA::getInfo. It
either returns the cached info or runs the analysis.
Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now. The idea is that Loop Distribution won't support run-time stride
checking at least initially.
This means that when querying the analysis, symbolic stride information
can be provided optionally. Whether stride information is used can
invalidate the cache entry and rerun the analysis. Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.
Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.
On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass. A large chunk of the
diff is due to LAI becoming a pointer from a reference.
A test will be added as part of the -analyze patch.
Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229893
LAA will be an on-demand analysis pass, so we need to cache the result
of the analysis. canVectorizeMemory is renamed to analyzeLoop which
computes the result. canVectorizeMemory becomes the query function for
the cached result.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229892
The transformation passes will query this and then emit them as part of
their own report. The currently only user LV is modified to do just
that.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229891
As LAA is becoming a pass, we can no longer pass the params to its
constructor. This changes the command line flags to have external
storage. These can now be accessed both from LV and LAA.
VectorizerParams is moved out of LoopAccessInfo in order to shorten the
code to access it.
This commits also has the fix (D7731) to the break dependence cycle
between the analysis and vector libraries.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229890
This reverts commit r229651.
I'd like to ultimately revert r229650 but this reformat stands in the
way. I'll reformat the affected files once the the loop-access pass is
fully committed.
llvm-svn: 229889
Use long long for the epi64 argument, like the other intrinsics.
NFC since this is only defined in 64-bit mode, not in 32-bit.
Fix suggested by H. J. Lu!
llvm-svn: 229886
This is true in clang, and let's us remove the problematic code that
waits around for the original file and then times out if it doesn't get
created in short order. This caused any 'dead' lock file or legitimate
time out to cause a cascade of timeouts in any processes waiting on the
same lock (even if they only just showed up).
llvm-svn: 229881
Summary:
this also gets rid of a compiler warning in release builds by using a dynamically allocated
buffer. Therefore, a size assertion is not necessary (and probably should have been an error in
the first place).
Reviewers: tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7751
llvm-svn: 229878
X86 load folding is fragile; eg, the tests here
don't work without AVX even though they should. This
is because we have a mix of tablegen patterns that have
been added over time, and we have a load folding table
used by the peephole optimizer that has to be kept in
sync with the ever-changing ISA and tablegen defs.
llvm-svn: 229870
systematic lowering of v8i16.
This required a slight strategy shift to prefer unpack lowerings in more
places. While this isn't a cut-and-dry win in every case, it is in the
overwhelming majority. There are only a few places where the old
lowering would probably be a touch faster, and then only by a small
margin.
In some cases, this is yet another significant improvement.
llvm-svn: 229859
addition to lowering to trees rooted in an unpack.
This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.
llvm-svn: 229856
terribly complex partial blend logic.
This code path was one of the more complex and bug prone when it first
went in and it hasn't faired much better. Ultimately, with the simpler
basis for unpack lowering and support bit-math blending, this is
completely obsolete. In the worst case without this we generate
different but equivalent instructions. However, in many cases we
generate much better code. This is especially true when blends or pshufb
is available.
This does expose one (minor) weakness of the unpack lowering that I'll
try to address.
In case you were wondering, this is actually a big part of what I've
been trying to pull off in the recent string of commits.
llvm-svn: 229853
needed, and significantly improve the SSSE3 path.
This makes the new strategy much more clear. If we can blend, we just go
with that. If we can't blend, we try to permute into an unpack so
that we handle cases where the unpack doing the blend also simplifies
the shuffle. If that fails and we've got SSSE3, we now call into
factored-out pshufb lowering code so that we leverage the fact that
pshufb can set up a blend for us while shuffling. This generates great
code, especially because we *know* we don't have a fast blend at this
point. Finally, we fall back on decomposing into permutes and blends
because we do at least have a bit-math-based blend if we need to use
that.
This pretty significantly improves some of the v8i16 code paths. We
never need to form pshufb for the single-input shuffles because we have
effective target-specific combines to form it there, but we were missing
its effectiveness in the blends.
llvm-svn: 229851
+ separate bug report for "Free alloca()" error to be able to customize checkers responsible for this error.
+ Muted "Free alloca()" error for NewDelete checker that is not responsible for c-allocated memory, turned on for unix.MismatchedDeallocator checker.
+ RefState for alloca() - to be able to detect usage of zero-allocated memory by upcoming ZeroAllocDereference checker.
+ AF_Alloca family to handle alloca() consistently - keep proper family in RefState, handle 'alloca' by getCheckIfTracked() facility, etc.
+ extra tests.
llvm-svn: 229850